Skip to main content

An Overview of Flow Cytometry: Its Principles and Applications in Allergic Disease Research

  • Protocol
  • First Online:
Animal Models of Allergic Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2223))

Abstract

Flow cytometry is a popular technique used for both clinical and research purposes. It involves laser-based technology to characterize cells based on size, shape, and complexity. Additionally, flow cytometers are equipped with the ability to take fluorescence measurements at multiple wavelengths. This capability makes the flow cytometer a practical resource in the utilization of fluorescently conjugated antibodies, fluorescent proteins, DNA binding dyes, viability dyes, and ion indicator dyes. As the technology advances, the number of parameters a flow cytometer can measure has increased tremendously, and now some has the capacity to analyze 30–50 or more parameters on a single cell. Here, we describe the basic principles involved in the mechanics and procedures of flow cytometry along with an insight into applications of flow cytometry techniques for biomedical and allergic disease research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Austin Suthanthiraraj PP, Graves SW (2013) Fluidics. Curr Protoc Cytom 65(1):1.2.1–1.2.14. https://doi.org/10.1002/0471142956.cy0102s65

    Article  Google Scholar 

  2. Tzur A, Moore JK, Jorgensen P, Shapiro HM, Kirschner MW (2011) Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS One 6(1):e16053–e16053. https://doi.org/10.1371/journal.pone.0016053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jahan-Tigh RR, Ryan C, Obermoser G, Schwarzenberger K (2012) Flow cytometry. J Invest Dermatol 132(10):e1

    Article  CAS  Google Scholar 

  4. Shapiro HM (2005) Practical flow cytometry, 4th edn. Wiley, Hoboken, NJ

    Google Scholar 

  5. Gavasso S (2009) Flow cytometry and cell activation. In: Hawley TS, Hawley RG (eds) T cell protocols. Methods in molecular biology, 2nd edn. Humana Press, Totowa, NJ, pp 35–46

    Google Scholar 

  6. McKinnon KM (2018) Flow cytometry: an overview. Curr Protoc Immunol 120:5.1.1–5.1.11. https://doi.org/10.1002/cpim.40

    Article  Google Scholar 

  7. Perfetto SP, Chattopadhyay PK, Lamoreaux L, Nguyen R, Ambrozak D, Koup RA, Roederer M (2010) Amine-reactive dyes for dead cell discrimination in fixed samples. Curr Protoc Cytom Chapter 9:Unit-9.34. https://doi.org/10.1002/0471142956.cy0934s53

    Article  PubMed  Google Scholar 

  8. Donnenberg AD, Donnenberg VS (2007) Rare-event analysis in flow cytometry. Clin Lab Med 27(3):627–652

    Article  Google Scholar 

  9. Jimenez Vera E, Chew YV, Nicholson L, Burns H, Anderson P, Chen H-T, Williams L, Keung K, Zanjani NT, Dervish S, Patrick E, Wang XM, Yi S, Hawthorne W, Alexander S, O’Connell PJ, Hu M (2019) Standardisation of flow cytometry for whole blood immunophenotyping of islet transplant and transplant clinical trial recipients. PLoS One 14(5):e0217163–e0217163. https://doi.org/10.1371/journal.pone.0217163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Itoua Maïga R, Lemieux J, Roy A, Simard C, Néron S (2014) Flow cytometry assessment of in vitro generated CD138. Biomed Res Int 2014:536482

    Google Scholar 

  11. Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. J Anal Oncol 45(3):194–205

    CAS  Google Scholar 

  12. Reichard A, Asosingh K (2019) Best practices for preparing a single cell suspension from solid tissues for flow cytometry. Cytometry A 95(2):219–226

    Article  CAS  Google Scholar 

  13. Mulder WMC, Koenen H, van de Muysenberg AJC, Bloemena E, Wagsfaff J, Scheper RJ (1994) Reduced expression of distinct T-cell CD molecules by collagenase/DNase treatment. Cancer Immunol Immunother 38(4):253–258. https://doi.org/10.1007/BF01533516

    Article  CAS  PubMed  Google Scholar 

  14. Verschoor CP, Lelic A, Bramson JL, Bowdish DME (2015) An introduction to automated flow cytometry gating tools and their implementation. Front Immunol 6(380). https://doi.org/10.3389/fimmu.2015.00380

  15. Lee H, Sun Y, Patti-Diaz L, Hedrick M, Ehrhardt AG (2019) High-throughput analysis of clinical flow cytometry data by automated gating. Bioinform Biol Insights 13:1177932219838851. https://doi.org/10.1177/1177932219838851

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tung JW, Heydari K, Tirouvanziam R, Sahaf B, Parks DR, Herzenberg LA, Herzenberg LA (2007) Modern flow cytometry: a practical approach. Clin Lab Med 27(3):453-v. https://doi.org/10.1016/j.cll.2007.05.001

    Article  PubMed Central  Google Scholar 

  17. Szalóki G, Goda K (2015) Compensation in multicolor flow cytometry. Cytometry A 87(11):982–985

    Article  Google Scholar 

  18. Hulspas R, O’Gorman MRG, Wood BL, Gratama JW, Sutherland DR (2009) Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry B 76B(6):355–364. https://doi.org/10.1002/cyto.b.20485

    Article  CAS  Google Scholar 

  19. Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69A(9):1037–1042. https://doi.org/10.1002/cyto.a.20333

    Article  Google Scholar 

  20. Feher K, Kirsch J, Radbruch A, Chang H-D, Kaiser T (2014) Cell population identification using fluorescence-minus-one controls with a one-class classifying algorithm. Bioinformatics 30(23):3372–3378

    Article  CAS  Google Scholar 

  21. Pockley AG, Foulds GA, Oughton JA, Kerkvliet NI, Multhoff G (2015) Immune cell phenotyping using flow cytometry. Curr Protoc Toxicol 66(1):18.18.11–18.18.34. https://doi.org/10.1002/0471140856.tx1808s66

    Article  Google Scholar 

  22. Jung T, Schauer U, Heusser C, Neumann C, Rieger C (1993) Detection of intracellular cytokines by flow cytometry. J Immunol Methods 159(1):197–207. https://doi.org/10.1016/0022-1759(93)90158-4

    Article  CAS  PubMed  Google Scholar 

  23. Chant ID, Rose PE, Morris AG (1995) Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br J Haematol 90(1):163–168. https://doi.org/10.1111/j.1365-2141.1995.tb03395.x

    Article  CAS  PubMed  Google Scholar 

  24. Murphy J, Goldberg GL (2013) Flow cytometric analysis of STAT phosphorylation. In: Nicholson SE, Nicola NA (eds) JAK-STAT signalling: methods and protocols. Humana Press, Totowa, NJ, pp 161–165. https://doi.org/10.1007/978-1-62703-242-1_11

    Chapter  Google Scholar 

  25. Ibrahim SF, van den Engh G (2007) Flow cytometry and cell sorting. In: Kumar A, Galaev IY, Mattiasson B (eds) Cell separation: fundamentals, analytical and preparative methods. Springer, Berlin, pp 19–39. https://doi.org/10.1007/10_2007_073

    Chapter  Google Scholar 

  26. Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ (2016) Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc 2016(11):pdb.prot087288

    Article  Google Scholar 

  27. Beletskii A, Cooper M, Sriraman P, Chiriac C, Zhao L, Abbot S, Yu L (2005) High-throughput phagocytosis assay utilizing a pH-sensitive fluorescent dye. BioTechniques 39(6):894–897. https://doi.org/10.2144/000112001

    Article  CAS  PubMed  Google Scholar 

  28. Vander Top EA, Perry GA, Gentry-Nielsen MJ (2006) A novel flow cytometric assay for measurement of in vivo pulmonary neutrophil phagocytosis. BMC Microbiol 6(1):61. https://doi.org/10.1186/1471-2180-6-61

  29. Elshal MF, McCoy JP (2006) Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38(4):317–323. https://doi.org/10.1016/j.ymeth.2005.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nadeem Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schmit, T., Klomp, M., Khan, M.N. (2021). An Overview of Flow Cytometry: Its Principles and Applications in Allergic Disease Research. In: Nagamoto-Combs, K. (eds) Animal Models of Allergic Disease. Methods in Molecular Biology, vol 2223. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1001-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1001-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1000-8

  • Online ISBN: 978-1-0716-1001-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics