Skip to main content

A Teleoperated Surgical Robot System

  • Protocol
  • First Online:
Neurosurgical Robotics

Part of the book series: Neuromethods ((NM,volume 162))

Abstract

This chapter reviews a teleoperated surgical robotic system that we have developed over the past several years at Vanderbilt University. It delivers needle-sized instruments into the human body that are able to move in a tentacle-like manner in the sense that they can controllably bend and elongate. Preclinical studies on this class of robots (by both our group and others) have investigated the feasibility of using them for intracerebral hemorrhage aspiration, thermal ablation to treat epilepsy, endoscopic third ventriculostomy, endoscopic colloid cyst removal, and endonasal pituitary surgery. This chapter initially describes the system from the perspective of endonasal pituitary surgery, but also includes a section at the end summarizing how the same basic robot concept can be applied in the other neurosurgical contexts mentioned above. We believe that one day, a system of the type described in this chapter will provide a “da Vinci-like” platform where the surgeon teleoperates the robot from a control console, and the robot makes minimally invasive procedures much easier for the surgeon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taylor RH, Menciassi A, Fichtinger G, Fiorini P, Dario P (2016) Medical robotics and computer-integrated surgery. Springer International Publishing, Cham, pp 1657–1684

    Google Scholar 

  2. Bargar WL, Bauer A, Börner M (1998) Primary and revision total hip replacement using the Robodoc (R) System. Clin Orthop Relat Res 354:82–91

    Article  Google Scholar 

  3. DiMaio S, Hanuschik M, and Kreaden U (2011) The da Vinci surgical system. In Surgical Robotics. Springer, Boston, MA, pp 199–217

    Google Scholar 

  4. Pearle AD, O’Loughlin PF, Kendoff DO (2010) Robot-assisted unicompartmental knee arthroplasty. J Arthroplast 25(2):230–237

    Article  Google Scholar 

  5. Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical applications: a survey. IEEE Trans Robot 31(6):1261–1280

    Article  Google Scholar 

  6. Rucker DC, Webster RJ III, Statics and dynamics of continuum robots with general tendon routing and external loading. IEEE Trans Robot 27(6):1033–1044 (2011)

    Article  Google Scholar 

  7. Camarillo DB, Milne CF, Carlson CR, Zinn MR, Salisbury JK (2008) Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans Robot 24(6):1262–1273

    Article  Google Scholar 

  8. Nguyen T-D, Burgner-Kahrs J (2015) A tendon-driven continuum robot with extensible sections. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2130–2135

    Google Scholar 

  9. Murphy RJ, Kutzer MD, Segreti SM, Lucas BC, Armand M (2014) Design and kinematic characterization of a surgical manipulator with a focus on treating osteolysis. Robotica 32(6):835–850

    Article  Google Scholar 

  10. Cianchetti M, Arienti A, Follador M, Mazzolai B, Dario P, Laschi C (2011) Design concept and validation of a robotic arm inspired by the octopus. Mater Sci Eng C 31(6):1230–1239

    Article  CAS  Google Scholar 

  11. Simaan N, Xu K, Wei W, Kapoor A, Kazanzides P, Taylor R, Flint P (2009) Design and integration of a telerobotic system for minimally invasive surgery of the throat. Int J Rob Res 28(9):1134–1153

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ding J, Goldman RE, Xu K, Allen PK, Fowler DL, Simaan N (2013) Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery. IEEE/ASME Trans Mechatron 18(5):1612–1624

    Article  Google Scholar 

  13. Ikuta K, Matsuda Y, Yajima D, Ota Y (2012) Pressure pulse drive: a control method for the precise bending of hydraulic active catheters. IEEE/ASME Trans Mechatron 17(5):876–883

    Article  Google Scholar 

  14. Bailly Y, Amirat Y, Fried G (2011) Modeling and control of a continuum style microrobot for endovascular surgery. IEEE Trans Robot 27(5):1024–1030

    Article  Google Scholar 

  15. Chen G, Pham MT, Redarce T (2009) Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy. Rob Auton Syst 57(6–7):712–722

    Article  Google Scholar 

  16. Rucker DC, Jones BA, Webster RJ III (2010) A geometrically exact model for externally loaded concentric tube continuum robots. IEEE Trans Robot 26(5):769–780

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dupont PE, Lock J, Itkowitz B, Butler E (2010) Design and control of concentric-tube robots. IEEE Trans Robot 26(2):209–225

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hendrick RJ, Mitchell CR, Herrell SD, Webster RJ III (2015) Hand-held transendoscopic robotic manipulators: a transurethral laser prostate surgery case study. Int J Rob Res 34(15):1559–1572

    Article  PubMed  PubMed Central  Google Scholar 

  19. Swaney PJ, Mahoney AW, Hartley BI, Remirez AA, Lamers EP, Feins RH, Alterovitz R, Webster RJ III (2017) Toward transoral peripheral lung access: combining continuum robots and steerable needles. J Med Robot Res 2(1):1750001

    Article  PubMed  Google Scholar 

  20. Bergeles C, Gosline AH, Vasilyev NV, Codd PJ, Pedro J, Dupont PE (2015) Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans Robot 31(1):67–84

    Article  PubMed  PubMed Central  Google Scholar 

  21. Swaney PJ, Gilbert HB, Webster RJ III, Russell PT III, Weaver KD (2015) Endonasal skull base tumor removal using concentric tube continuum robots: a phantom study. J Neurol Surg B Skull Base 76(2):145–149

    PubMed  Google Scholar 

  22. Comber DB, Barth EJ, Webster RJ (2014) Design and control of an magnetic resonance compatible precision pneumatic active cannula robot. J Med Devices 8(1):011003

    Article  Google Scholar 

  23. Burgner J, Swaney PJ, Lathrop RA, Weaver KD, Webster RJ III (2013) Debulking from within: a robotic steerable cannula for intracerebral hemorrhage evacuation. IEEE Trans Biomed Eng 60(9):2567–2575

    Article  PubMed  Google Scholar 

  24. Butler EJ, Hammond-Oakley R, Chawarski S, Gosline AH, Codd P, Anor T, Madsen JR, Dupont PE, Lock J (2012) Robotic neuro-endoscope with concentric tube augmentation. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2941–2946

    Google Scholar 

  25. Bodani V, Azimian H, Looi T, Drake J (2014) Design and evaluation of a concentric tube robot for minimally-invasive endoscopic paediatric neurosurgery. Hamlyn Symp Med Robot 1(1):25–26

    Google Scholar 

  26. Hendrick RJ (2017) System design and elastic stability modeling of transendoscopic continuum robots. Ph.D. dissertation

    Google Scholar 

  27. Swaney PJ, York PA, Gilbert HB, Burgner-Kahrs J, Webster RJ III (2016) Design, fabrication, and testing of a needle-sized wrist for surgical instruments. ASME J Med Devices 11(1):014501

    Article  Google Scholar 

  28. Burgner J, Rucker DC, Gilbert HB, Swaney PJ, Russell PT III, Weaver KD, Webster RJ III (2014) A telerobotic system for transnasal surgery IEEE/ASME Trans Mechatron 19(3):996–1006

    Article  Google Scholar 

  29. Camarillo DB, Krummel TM, Salisbury JK Jr (2004) Robotic technology in surgery: past, present, and future. Am J Surg 188(4):2–15

    Article  Google Scholar 

  30. Wirz R, Torres L, Swaney PJ, Gilbert HB, Alterovitz R, Webster RJ III, Weaver KD, Russell PT III (2015) An experimental feasibility study on robotic endonasal telesurgery. Neurosurgery 76(4):479–484

    Article  PubMed  Google Scholar 

  31. Godage IS, Remirez AA, Wirz R, Weaver KD, Burgner-Kahrs J, Webster RJ III (2015) Robotic intracerebral hemorrhage evacuation: an in-scanner approach with concentric tube robots. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1447–1452

    Google Scholar 

  32. Gilbert HB, Neimat J, Webster RJ III (2015) Concentric tube robots as steerable needles: achieving follow-the-leader deployment. IEEE Trans Robot 31(2):246–258

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wieser HG, Ortega M, Friedman A, Yonekawa Y (2003) Long-term seizure outcomes following amygdalohippocampectomy. J Neurosurg 98(4):751–763

    Article  PubMed  Google Scholar 

  34. Comber DB, Pitt EB, Gilbert HB, Powelson MW, Matijevich E, Neimat JS, Webster RJ III, Barth EJ (2017) Optimization of curvilinear needle trajectories for transforamenal hippocampotomy. Oper Neurosurg 13(1):15–22

    Article  Google Scholar 

  35. Pitt EB, Comber DB, Chen Y, Neimat JS, Webster RJ, Barth EJ (2016) Follow-the-leader deployment of steerable needles using a magnetic resonance-compatible robot with stepper actuators. J Med Devices 10(2):020945

    Article  Google Scholar 

  36. Xu K, Simaan N (2008) An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans Robot 24(3):576–587

    Article  Google Scholar 

  37. Okamura AM (2009) Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 19(1):102

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mahoney A, Bruns T, Swaney PJ, Webster RJ III (2016) On the inseparable nature of sensor selection, sensor placement, and state estimation in continuum robots or ‘Where to put your sensors and how to use them’. In: IEEE international conference on robotics and automation (ICRA), pp 4472–4478

    Google Scholar 

  39. Kim B, Ha J, Park FC, Dupont PE (2014) Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots. In: IEEE international conference on robotics and automation (ICRA). IEEE, Piscataway, pp 5374–5379

    Chapter  Google Scholar 

  40. Csencsits M, Jones BA, McMahan W, Iyengar V, Walker ID (2005) User interfaces for continuum robot arms. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3123–3130

    Google Scholar 

  41. Travaglini TA, Swaney PJ, Weaver KD, Webster RJ III (2015) Initial experiments with the leap motion as a user interface in robotic endonasal surgery. In: IFTOMM international symposium on robotics & mechatronics, pp 171–179

    Google Scholar 

  42. Anor T, Madsen JR, Dupont P (2011) Algorithms for design of continuum robots using the concentric tubes approach: a neurosurgical example. In: 2011 IEEE international conference on robotics and automation (ICRA). IEEE, Piscataway, pp 667–673

    Chapter  Google Scholar 

  43. Burgner J, Gilbert HB, Webster RJ III (2013) On the computational design of concentric tube robots: incorporating volume-based objectives. In: IEEE international conference on robotics and automation, pp 1185–1190

    Google Scholar 

  44. Torres LG, Webster RJ, Alterovitz R (2012) Task-oriented design of concentric tube robots using mechanics-based models. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4449–4455

    Google Scholar 

  45. Ha J, Park FC, Dupont PE (2014) Achieving elastic stability of concentric tube robots through optimization of tube precurvature. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 864–870

    Google Scholar 

  46. Baykal C, Torres LG, Alterovitz R (2015) Optimizing design parameters for sets of concentric tube robots using sampling-based motion planning. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4381–4387

    Google Scholar 

  47. Hendrick RJ, Gilbert HB, Webster RJ (2015) Designing snap-free concentric tube robots: a local bifurcation approach. In: IEEE international conference on robotics and automation (ICRA). IEEE, Piscataway, pp 2256–2263

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Webster III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Remirez, A.A., Rox, M.F., Bruns, T.L., Russell, P.T., Webster III, R.J. (2021). A Teleoperated Surgical Robot System. In: Marcus, H.J., Payne, C.J. (eds) Neurosurgical Robotics. Neuromethods, vol 162. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0993-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0993-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0992-7

  • Online ISBN: 978-1-0716-0993-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics