Skip to main content

Parameterization of a Dioxygen Binding Metal Site Using the MCPB.py Program

  • Protocol
  • First Online:
Structural Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2199))

Abstract

The MCPB.py program greatly facilitates force field parameterization for metal sites in metalloproteins and organometallic compounds. Herein we present an example of MCPB.py to the parameterization of the dioxygen binding metal site of peptidylglycine-alphahydroxylating monooxygenase (PHM), which contains a copper ion. In this example, we also extend the functionality of MCPB.py to support molecular dynamics (MD) simulations in GROMACS through a python script. Illustrative MD simulations were performed using GROMACS and the results were analyzed. Notes about the program were also provided in this chapter, to assist MCPB.py users for metal site parameterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Woodson SA (2005) Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr Opin Chem Biol 9(2):104–109. https://doi.org/10.1016/j.cbpa.2005.02.004

    Article  CAS  Google Scholar 

  2. Dupureur CM (2008) Roles of metal ions in nucleases. Curr Opin Chem Biol 12(2):250–255. https://doi.org/10.1016/j.cbpa.2008.01.012

    Article  CAS  Google Scholar 

  3. Andreini C, Bertini I, Cavallaro G, Holliday G, Thornton J (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13(8):1205–1218. https://doi.org/10.1007/s00775-008-0404-5

    Article  CAS  Google Scholar 

  4. Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7(1):25–35. https://doi.org/10.1038/nrmicro2057

    Article  CAS  Google Scholar 

  5. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  6. MacKerell AD, Bashford D, Bellott M, Dunbrack R, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha S (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616. https://doi.org/10.1021/jp973084f

    Article  CAS  Google Scholar 

  7. MacKerell AD, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56(4):257–265. https://doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W

    Article  CAS  Google Scholar 

  8. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843. https://doi.org/10.1021/jp101759q

    Article  CAS  PubMed Central  Google Scholar 

  9. Cheatham TE, Case DA (2013) Twenty-five years of nucleic acid simulations. Biopolymers 99(12):969–977. https://doi.org/10.1002/bip.22331

    Article  CAS  Google Scholar 

  10. Dickson CJ, Madej BD, Skjevik ÅA, Betz RM, Teigen K, Gould IR, Walker RC (2014) Lipid14: the amber lipid force field. J Chem Theory Comput 10(2):865–879

    Article  CAS  PubMed Central  Google Scholar 

  11. Li P, Merz KM (2017) Metal ion modeling using classical mechanics. Chem Rev 117(3):1564–1686. https://doi.org/10.1021/acs.chemrev.6b00440

    Article  CAS  PubMed Central  Google Scholar 

  12. Lin F, Wang R (2010) Systematic derivation of AMBER force field parameters applicable to zinc-containing systems. J Chem Theory Comput 6(6):1852–1870

    Article  CAS  Google Scholar 

  13. Peters MB, Yang Y, Wang B, Füsti-Molnár L, Weaver MN, Merz KM Jr (2010) Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF). J Chem Theory Comput 6(9):2935–2947. https://doi.org/10.1021/ct1002626

    Article  CAS  PubMed Central  Google Scholar 

  14. Li P, Roberts BP, Chakravorty DK, Merz KM Jr (2013) Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J Chem Theory Comput 9(6):2733–2748. https://doi.org/10.1021/ct400146w

    Article  CAS  PubMed Central  Google Scholar 

  15. Li P, Merz KM Jr (2014) Taking into account the ion-induced dipole interaction in the nonbonded model of ions. J Chem Theory Comput 10(1):289–297

    Article  CAS  Google Scholar 

  16. Åqvist J, Warshel A (1990) Free energy relationships in metalloenzyme-catalyzed reactions. Calculations of the effects of metal ion substitutions in staphylococcal nuclease. J Am Chem Soc 112(8):2860–2868

    Article  Google Scholar 

  17. Pang Y-P, Xu K, Yazal JE, Prendergast FG (2000) Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach. Protein Sci 9(10):1857–1865. https://doi.org/10.1110/ps.9.10.1857

    Article  CAS  PubMed Central  Google Scholar 

  18. Li P, Merz KM Jr (2016) MCPB.py: a Python based metal center parameter builder. J Chem Inf Model 56(4):599–604. https://doi.org/10.1021/acs.jcim.5b00674

    Article  CAS  Google Scholar 

  19. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  20. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  Google Scholar 

  21. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed Central  Google Scholar 

  22. Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex. Science 304(5672):864–867

    Article  CAS  Google Scholar 

  23. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33(Suppl 2):W368–W371. https://doi.org/10.1093/nar/gki464

    Article  CAS  PubMed Central  Google Scholar 

  24. Klinman JP (2006) The copper-enzyme family of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. J Biol Chem 281(6):3013–3016

    Article  CAS  Google Scholar 

  25. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  CAS  Google Scholar 

  26. Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham III TE, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Giambasu G, Giese T, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Huang Y, Izadi S, Kovalenko A, Krasny R, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Man V, Mermelstein DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Swails J, Walker RC, Wang J, Wei H, Wilson L, Wolf RM, Wu X, Xiao L, Xiong Y, York DM, Kollman PA (2019), AMBER 2019, University of California, San Francisco

    Google Scholar 

  27. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H (2016) Gaussian 16, revision A. 03. Gaussian Inc, Wallingford, CT

    Google Scholar 

  28. Besler BH, Merz KM Jr, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11(4):431–439

    Article  CAS  Google Scholar 

  29. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280

    Article  CAS  Google Scholar 

  30. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed Central  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  32. Li P, Song LF, Merz KM Jr (2015) Systematic parameterization of monovalent ions employing the nonbonded model. J Chem Theory Comput 11(4):1645–1657

    Article  CAS  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  34. Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095. https://doi.org/10.1021/ct400341p

    Article  CAS  PubMed Central  Google Scholar 

  35. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed Central  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Prof. Justin Lemkul (Virginia Tech) for the GROMACS tutorial for simulating lysozyme in water. We acknowledge the computational support from the High Performance Computing Center (HPCC) at the Institute for Cyber-enabled Research (iCER) at Michigan State University (MSU). Pengfei Li gratefully acknowledges financial support through Prof. Sharon Hammes-Schiffer by the National Institutes of Health (Grant Number GM056207).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, P., Merz, K.M. (2021). Parameterization of a Dioxygen Binding Metal Site Using the MCPB.py Program. In: Chen, Y.W., Yiu, CP.B. (eds) Structural Genomics. Methods in Molecular Biology, vol 2199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0892-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0892-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0891-3

  • Online ISBN: 978-1-0716-0892-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics