Skip to main content

Phosphoproteomic Analysis of Plant Membranes

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2200))

Abstract

Mass spectrometry (MS) is a powerful tool to investigate plant phosphorylation dynamics on a system-wide scale (phosphoproteomics). Plant membrane phosphoproteomics enables elucidating regulatory patterns in membranes, such as kinase-target relationships in different signaling pathways. Here, we present “ShortPhos,” an efficient and simple phosphoproteomics protocol for research on plant membrane proteins, which allows fast and efficient identification and quantification of phosphopeptides from small amounts of starting plant material and/or membrane proteins. This method improves upon the efficiency of plant membrane phosphoproteomics profiling and can be applied to the study of membrane-based signaling networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Slijper M, Menke FL (2007) Quantitative phospho-proteomics of early elicitor signalling in Arabidopsis. Mol Cell Proteomics 6(7):1705–1713

    Article  Google Scholar 

  2. Chen Y, Höhenwarter W, Weckwerth W (2010) Comparative analysis of phytohormone—responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and MAPA. Plant J 63(1):1–17

    CAS  PubMed  Google Scholar 

  3. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448(7152):497–500. https://doi.org/10.1038/nature05999

    Article  CAS  PubMed  Google Scholar 

  4. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  Google Scholar 

  5. Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen starved Arabidopsis seedlings. Plant J 69(6):978–995

    Article  CAS  Google Scholar 

  6. Haruta M, Gray WM, Sussman MR (2015) Regulation of the plasma membrane proton pump (H(+)-ATPase) by phosphorylation. Curr Opin Plant Biol 28:68–75. https://doi.org/10.1016/j.pbi.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S, Gribskov M (2002) The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol 129(2):908–925. https://doi.org/10.1104/pp.004002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Sun Y, Burlingam A, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11(10):1254–1260

    Article  CAS  Google Scholar 

  9. Lan P, Li W, Wen TN, Schmidt W (2012) Quantitative phosphoproteome profiling of iron-deficient Arabidopsis roots. Plant Physiol 159(1):403–417

    Article  CAS  Google Scholar 

  10. Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Caño-Delgado AI et al (2012) Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24(6):2262–2278

    Article  CAS  Google Scholar 

  11. Menz J, Li Z, Schulze WX, Ludewig U (2016) Early nitrogen-deprivation responses in Arabidopsis roots reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition. Plant J 88(5):717–734. https://doi.org/10.1111/tpj.13272

    Article  CAS  PubMed  Google Scholar 

  12. Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6(10):1711–1726

    Article  Google Scholar 

  13. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64(2):445–458

    Article  CAS  Google Scholar 

  14. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670

    Article  CAS  Google Scholar 

  15. Reiland S, Finazzi G, Endler A, Willig A, Baerenfaller K, Grossmann J, Gerrits B et al (2011) Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF). Proc Natl Acad Sci U S A 108(31):12955–12960

    Article  CAS  Google Scholar 

  16. Reiland S, Messerli G, Baerenfäller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150(2):889–903

    Article  CAS  Google Scholar 

  17. Rudashevskaya EL, Ye J, Jensen ON, Fuglsang AT, Palmgren MG (2012) Phosphosite mapping of P-type plasma membrane H+-ATPase in homologous and heterologous environments. J Biol Chem 287(7):4904–4913

    Article  CAS  Google Scholar 

  18. Ryu H, Kim K, Cho H, Hwang I (2010) Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling. Mol Cells 29(3):291–296. https://doi.org/10.1007/s10059-010-0034-y

    Article  CAS  PubMed  Google Scholar 

  19. Schweighofer A, Meskiene I (2015) Phosphatases in plants. Methods Mol Biol 1306:25–46. https://doi.org/10.1007/978-1-4939-2648-0_2

    Article  CAS  PubMed  Google Scholar 

  20. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132(2):530–543. https://doi.org/10.1104/pp.103.021964

    Article  CAS  PubMed  Google Scholar 

  21. Tran HT, Plaxton WC (2008) Proteomic analysis of alterations in the secretome of Arabidopsis thaliana suspension cells subjected to nutritional phosphate deficiency. Proteomics 8. https://doi.org/10.1002/pmic.200800292

  22. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  23. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  Google Scholar 

  24. Wang R, Liu M, Yuan M, Oses-Prieto JA, Cai X, Sun Y, Burlingame AL, Wang ZY, Tang W (2016) The brassinosteroid-activated BRI1 receptor kinase is switched off by dephosphorylation mediated by cytoplasm-localized PP2A B’ subunits. Mol Plant 9(1):148–157. https://doi.org/10.1016/j.molp.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD (2008) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15(2):220–235. https://doi.org/10.1016/j.devcel.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  26. Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y et al (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2(4):505–513

    Article  CAS  Google Scholar 

  27. Wu XN, Xi L, Pertl-Obermeyer H, Li Z, Chu LC, Schulze WX (2017) Highly efficient single-step enrichment of low abundance phosphopeptides from plant membrane preparations. Front Plant Sci 8:1673. https://doi.org/10.3389/fpls.2017.01673

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu X, Sanchez-Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX (2013) Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 12(10):2856–2873

    Article  CAS  Google Scholar 

  29. Wu X, Sklodowski K, Encke B, Schulze WX (2014) A kinase-phosphatase signaling module with BSK8 and BSL2 involved in regulation of sucrose-phosphate synthase. J Proteome Res 13:3397–3409

    Article  CAS  Google Scholar 

  30. Zhang H, Zhou H, Berke L, Heck AJ, Mohammed S, Scheres B, Menke FL (2013) Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth. Mol Cell Proteomics 12(5):1158–1169

    Article  CAS  Google Scholar 

  31. Zulawski M, Schulze G, Braginets R, Hartmann S, Schulze WX (2014) The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics 15:548. https://doi.org/10.1186/1471-2164-15-548

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zulawski M, Schulze WX (2015) The plant kinome. Methods Mol Biol 1306:1–23. https://doi.org/10.1007/978-1-4939-2648-0_1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Na Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xi, L., Schulze, W.X., Wu, X.N. (2021). Phosphoproteomic Analysis of Plant Membranes. In: Sanchez-Serrano, J.J., Salinas, J. (eds) Arabidopsis Protocols . Methods in Molecular Biology, vol 2200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0880-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0880-7_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0879-1

  • Online ISBN: 978-1-0716-0880-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics