Skip to main content

Identification and Quantification of Small RNAs

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2200))

Abstract

RNA silencing plays a critical role in diverse biological processes in plants including growth, development, and responses to abiotic and biotic stresses. RNA silencing is guided by small non-coding RNAs (sRNAs) with the length of 21–24 nucleotides (nt) that are loaded into Argonaute (AGO) to repress expression of target loci and transcripts through transcriptional or posttranscriptional gene silencing mechanisms. Identification and quantitative characterization of sRNAs are crucial steps toward appreciation of their functions in biology. Here, we developed a step-by-step protocol to precisely illustrate the process of cloning of sRNA libraries and correspondingly computational analysis of the recovered sRNAs. This protocol can be used in all kinds of organisms, including Arabidopsis, and is compatible with various high-throughput sequence technologies such as Illumina Hiseq. Thus, we wish that this protocol represents an accurate way to identify and quantify sRNAs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ma Z, Zhang X (2018) Actions of plant argonautes: predictable or unpredictable? Curr Opin Plant Biol 45:59–67

    Article  CAS  Google Scholar 

  2. Bartel DP (2004) Micrornas: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  3. Pall GS, Hamilton AJ (2008) Improved northern blot method for enhanced detection of small rna. Nat Protoc 3:1077

    Article  CAS  Google Scholar 

  4. Kroh EM, Parkin RK, Mitchell PS et al (2010) Analysis of circulating microrna biomarkers in plasma and serum using quantitative reverse transcription-pcr (qrt-pcr). Methods 50:298–301

    Article  CAS  Google Scholar 

  5. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of micrornas by stem–loop rt–pcr. Nucleic Acids Res 33:e179–e179

    Article  Google Scholar 

  6. Git A, Dvinge H, Salmon-Divon M et al (2010) Systematic comparison of microarray profiling, real-time pcr, and next-generation sequencing technologies for measuring differential microrna expression. RNA 16:991–1006

    Article  CAS  Google Scholar 

  7. Hafner M, Landgraf P, Ludwig J et al (2008) Identification of micrornas and other small regulatory rnas using cdna library sequencing. Methods 44:3–12

    Article  CAS  Google Scholar 

  8. Wang H, Zhang X, Liu J et al (2011) Deep sequencing of small rnas specifically associated with arabidopsis ago1 and ago4 uncovers new ago functions. Plant J 67:292–304

    Article  CAS  Google Scholar 

  9. Williams Z, Ben-Dov IZ, Elias R et al (2013) Comprehensive profiling of circulating microrna via small rna sequencing of cdna libraries reveals biomarker potential and limitations. Proc Natl Acad Sci U S A 110:4255–4260

    Article  CAS  Google Scholar 

  10. Baran-Gale J, Kurtz CL, Erdos MR et al (2015) Addressing bias in small rna library preparation for sequencing: a new protocol recovers micrornas that evade capture by current methods. Front Genet 6:352

    Article  Google Scholar 

  11. Hafner M, Renwick N, Farazi TA et al (2012) Barcoded cdna library preparation for small rna profiling by next-generation sequencing. Methods 58:164–170

    Article  CAS  Google Scholar 

  12. Hafner M, Renwick N, Brown M et al (2011) Rna-ligase-dependent biases in mirna representation in deep-sequenced small rna cdna libraries. RNA (New York, NY) 17:1697–1712

    Article  CAS  Google Scholar 

  13. Raabe CA, Tang T-H, Brosius J et al (2013) Biases in small rna deep sequencing data. Nucleic Acids Res 42:1414–1426

    Article  Google Scholar 

  14. Zhu H, Hu F, Wang R et al (2011) Arabidopsis argonaute10 specifically sequesters mir166/165 to regulate shoot apical meristem development. Cell 145:242–256

    Article  CAS  Google Scholar 

  15. Zhang Z, Liu X, Guo X et al (2016) Arabidopsis ago3 predominantly recruits 24-nt small rnas to regulate epigenetic silencing. Nat Plants 2:16049

    Article  CAS  Google Scholar 

  16. Zhang Z, Hu F, Sung MW et al (2017) Risc-interacting clearing 3′-5′ exoribonucleases (rices) degrade uridylated cleavage fragments to maintain functional risc in Arabidopsis thaliana. elife 6:e24466

    Article  Google Scholar 

  17. Wang Z, Ma Z, Castillo-González C et al (2018) Swi2/snf2 atpase chr2 remodels pri-mirnas via serrate to impede mirna production. Nature 557:516–521

    Article  CAS  Google Scholar 

  18. Ma Z, Castillo-Gonzalez C, Wang Z et al (2018) Arabidopsis serrate coordinates histone methyltransferases atxr5/6 and rna processing factor rdr6 to regulate transposon expression. Dev Cell 45: 769–784 e766

    Google Scholar 

  19. Guo X, Ma Z, Zhang Z et al (2017) Small rna-sequencing links physiological changes and rddm process to vegetative-to-floral transition in apple. Front Plant Sci 8:873

    Article  Google Scholar 

  20. Lee Y, Kim VN (2005) Preparation and analysis of drosha. Rna silencing. Springer, pp 17–28

    Google Scholar 

  21. Kuksa PP, Amlie-Wolf A, Katanić Ž et al (2018) Spar: Small rna-seq portal for analysis of sequencing experiments. Nucleic Acids Res 46:W36–W42

    Article  CAS  Google Scholar 

  22. Hoogstrate Y, Jenster G, Martens-Uzunova ES (2014) Flaimapper: computational annotation of small ncrna-derived fragments using rna-seq high-throughput data. Bioinformatics 31:665–673

    Article  Google Scholar 

  23. Wu X, Kim T-K, Baxter D et al (2017) Srnanalyzer—a flexible and customizable small rna sequencing data analysis pipeline. Nucleic Acids Res 45:12140–12151

    Article  CAS  Google Scholar 

  24. Davis MPA, van Dongen S, Abreu-Goodger C et al (2013) Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods 63:41–49

    Article  CAS  Google Scholar 

  25. Patel RK, Jain M (2012) Ngs qc toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619

    Article  CAS  Google Scholar 

  26. Gordon A, Hannon G (2010) Fastx-toolkit. FASTQ/A short-reads preprocessing tools (unpublished) http://hannonlab.cshl.edu/fastx_toolkit 5

  27. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  28. Jiang H, Lei R, Ding S-W et al (2014) Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform 15:182–182

    Article  Google Scholar 

  29. Lohse M, Bolger AM, Nagel A et al (2012) Robina: a user-friendly, integrated software solution for rna-seq-based transcriptomics. Nucleic Acids Res 40:W622–W627

    Article  CAS  Google Scholar 

  30. Fonseca NA, Rung J, Brazma A et al (2012) Tools for mapping high-throughput sequencing data. Bioinformatics 28:3169–3177

    Article  CAS  Google Scholar 

  31. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  Google Scholar 

  32. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and samtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  33. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of rna-seq experiments with tophat and cufflinks. Nat Protoc 7:562

    Article  CAS  Google Scholar 

  34. Liao Y, Smyth GK, Shi W (2013) Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  Google Scholar 

  35. Pyl PT, Anders S, Huber W (2014) Htseq—a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    PubMed  PubMed Central  Google Scholar 

  36. Dillies M-A, Rau A, Aubert J et al (2012) A comprehensive evaluation of normalization methods for illumina high-throughput rna sequencing data analysis. Brief Bioinform 14:671–683

    Article  Google Scholar 

  37. Varet H, Brillet-Guéguen L, Coppée J-Y et al (2016) Sartools: a deseq2- and edger-based r pipeline for comprehensive differential analysis of rna-seq data. PLoS One 11:e0157022

    Article  Google Scholar 

  38. Russo F, Angelini C (2014) Rnaseqgui: a gui for analysing rna-seq data. Bioinformatics 30:2514–2516

    Article  CAS  Google Scholar 

  39. Tabara M, Ohtani M, Kanekatsu M et al (2018) Size distribution of small interfering rnas in various organs at different developmental stages is primarily determined by the dicing activity of dicer-like proteins in plants. Plant Cell Physiol 59:2228–2238

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the X. Zhang’s laboratory was supported by the NIH grant R01GM132401. D.S. was supported by the China Scholar Council Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuren Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, D., Ma, Z., Zhu, J., Zhang, X. (2021). Identification and Quantification of Small RNAs. In: Sanchez-Serrano, J.J., Salinas, J. (eds) Arabidopsis Protocols . Methods in Molecular Biology, vol 2200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0880-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0880-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0879-1

  • Online ISBN: 978-1-0716-0880-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics