Skip to main content

Combining Whole-Cell Patch-Clamp Recordings with Single-Cell RNA Sequencing

  • Protocol
  • First Online:
Patch Clamp Electrophysiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2188))

Abstract

To understand how the brain functions we need to understand the properties of its constituent cells. Whole-cell patch-clamp recordings of neurons have enabled studies of their intrinsic electrical properties as well as their synaptic connectivity within neural circuits. Recent technological advances have now made it possible to combine this with a sampling of their transcriptional profile. Here we provide a detailed description how to combine whole-cell patch-clamp recordings of neurons in brain slices followed by extraction of their cytoplasm suitable for single-cell RNA sequencing and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gokce O, Stanley GM, Treutlein B et al (2016) Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-Seq. Cell Rep 16:1126–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Munoz-Manchado AB, Bengtsson Gonzales C, Zeisel A et al (2018) Diversity of interneurons in the dorsal striatum revealed by single-cell RNA sequencing and PatchSeq. Cell Rep 24(2179–2190):e2177

    Google Scholar 

  3. Rosenberg AB, Roco CM, Muscat RA et al (2018) Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360:176–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saunders A, Macosko EZ, Wysoker A et al (2018) Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174(1015–1030):e1016

    Google Scholar 

  5. Tasic B, Menon V, Nguyen TN et al (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19:335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tasic B, Yao Z, Graybuck LT et al (2018) Shared and distinct transcriptomic cell types across neocortical areas. Nature 563:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeisel A, Munoz-Manchado AB, Codeluppi S et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142

    Article  CAS  PubMed  Google Scholar 

  8. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toledo-Rodriguez M, Markram H (2014) Single-cell RT-PCR, a technique to decipher the electrical, anatomical, and genetic determinants of neuronal diversity. Methods Mol Biol 1183:143–158

    Article  PubMed  Google Scholar 

  10. Cadwell CR, Palasantza A, Jiang X et al (2016) Electrophysiological, transcriptomic and morphologic profiling of single neurons using patch-seq. Nat Biotechnol 34:199–203

    Article  CAS  PubMed  Google Scholar 

  11. Ellender TJ, Avery SV, Mahfooz K et al (2019) Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks. Nat Commun 10:5224

    Google Scholar 

  12. Eberwine J, Yeh H, Miyashiro K et al (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 89:3010–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Picelli S, Faridani OR, Bjorklund AK et al (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9:171–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a MRC Career Development Award (MR/M009599/1) to TJE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommas J. Ellender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mahfooz, K., Ellender, T.J. (2021). Combining Whole-Cell Patch-Clamp Recordings with Single-Cell RNA Sequencing. In: Dallas, M., Bell, D. (eds) Patch Clamp Electrophysiology. Methods in Molecular Biology, vol 2188. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0818-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0818-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0817-3

  • Online ISBN: 978-1-0716-0818-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics