Skip to main content

Self-Labeling Enzyme Tags for Translocation Analyses of Salmonella Effector Proteins

  • Protocol
  • First Online:
Salmonella

Abstract

Salmonella enterica is an invasive, facultative intracellular pathogen with a highly sophisticated intracellular lifestyle. Invasion and intracellular proliferation are dependent on the translocation of effector proteins by two distinct type III secretion systems (T3SS) into the host cell. To unravel host-pathogen interactions, dedicated imaging techniques visualizing Salmonella effector proteins during the infection are essential. Here we describe a new approach utilizing self-labeling enzyme (SLE) tags as a universal labeling tool for tracing effector proteins. This method is able to resolve the temporal and spatial dynamics of effector proteins in living cells. The method is applicable to conventional confocal fluorescence microscopy, but also to tracking and localization microscopy (TALM), and super-resolution microscopy (SRM) of single molecules, allowing the visualization of effector proteins beyond the optical diffraction limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Poirier V, Av-Gay Y (2015) Intracellular growth of bacterial pathogens: the role of secreted effector proteins in the control of phagocytosed microorganisms. Microbiol Spectr 3(6). https://doi.org/10.1128/microbiolspec.VMBF-0003-2014

  2. Ramos-Morales F (2012) Impact of Salmonella enterica type III secretion system effectors on the eukaryotic host cell. ISRN Cell Biol 2012:1–36

    Article  Google Scholar 

  3. Young AM, Palmer AE (2017) Methods to illuminate the role of Salmonella effector proteins during infection: a review. Front Cell Infect Microbiol 7:363. https://doi.org/10.3389/fcimb.2017.00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Enninga J, Mounier J, Sansonetti P, Tran Van Nhieu G (2005) Secretion of type III effectors into host cells in real time. Nat Methods 2(12):959–965. https://doi.org/10.1038/nmeth804

    Article  CAS  PubMed  Google Scholar 

  5. Van Engelenburg SB, Palmer AE (2008) Quantification of real-time Salmonella effector type III secretion kinetics reveals differential secretion rates for SopE2 and SptP. Chem Biol 15(6):619–628. https://doi.org/10.1016/j.chembiol.2008.04.014

    Article  CAS  PubMed  Google Scholar 

  6. Gawthorne JA, Audry L, McQuitty C, Dean P, Christie JM, Enninga J, Roe AJ (2016) Visualizing the translocation and localization of bacterial type III effector proteins by using a genetically encoded reporter system. Appl Environ Microbiol 82(9):2700–2708. https://doi.org/10.1128/AEM.03418-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gawthorne JA, Reddick LE, Akpunarlieva SN, Beckham KS, Christie JM, Alto NM, Gabrielsen M, Roe AJ (2012) Express your LOV: an engineered flavoprotein as a reporter for protein expression and purification. PLoS One 7(12):e52962. https://doi.org/10.1371/journal.pone.0052962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buckley AM, Petersen J, Roe AJ, Douce GR, Christie JM (2015) LOV-based reporters for fluorescence imaging. Curr Opin Chem Biol 27:39–45. https://doi.org/10.1016/j.cbpa.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  9. Van Engelenburg SB, Palmer AE (2010) Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors. Nat Methods 7(4):325–330. https://doi.org/10.1038/nmeth.1437

  10. Young AM, Minson M, McQuate SE, Palmer AE (2017) Optimized fluorescence complementation platform for visualizing Salmonella effector proteins reveals distinctly different intracellular niches in different cell types. ACS Infect Dis 3(8):575–584. https://doi.org/10.1021/acsinfecdis.7b00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liss V, Barlag B, Nietschke M, Hensel M (2015) Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy. Sci Rep 5:17740. https://doi.org/10.1038/srep17740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382. https://doi.org/10.1021/cb800025k

    Article  CAS  PubMed  Google Scholar 

  13. Los GV, Wood K (2007) The HaloTag: a novel technology for cell imaging and protein analysis. Methods Mol Biol 356:195–208

    CAS  PubMed  Google Scholar 

  14. Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136. https://doi.org/10.1016/j.chembiol.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  15. Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21(6):766–776. https://doi.org/10.1016/j.copbio.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  16. Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A 101(27):9955–9959. https://doi.org/10.1073/pnas.0401923101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deschout H, Cella Zanacchi F, Mlodzianoski M, Diaspro A, Bewersdorf J, Hess ST, Braeckmans K (2014) Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods 11(3):253–266. https://doi.org/10.1038/nmeth.2843

    Article  CAS  PubMed  Google Scholar 

  18. Galbraith CG, Galbraith JA (2011) Super-resolution microscopy at a glance. J Cell Sci 124(Pt 10):1607–1611. https://doi.org/10.1242/jcs.080085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vangindertael J, Camacho R, Sempels W, Mizuno H, Dedecker P, Janssen KPF (2018) An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl Fluoresc 6(2):022003. https://doi.org/10.1088/2050-6120/aaae0c

    Article  CAS  PubMed  Google Scholar 

  20. Yamanaka M, Smith NI, Fujita K (2014) Introduction to super-resolution microscopy. Microscopy (Oxf) 63(3):177–192. https://doi.org/10.1093/jmicro/dfu007

    Article  Google Scholar 

  21. Abrahams GL, Müller P, Hensel M (2006) Functional dissection of SseF, a type III effector protein involved in positioning the Salmonella-containing vacuole. Traffic 7(8):950–965. https://doi.org/10.1111/j.1600-0854.2006.00454.x

  22. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. https://doi.org/10.1126/science.1127344

    Article  PubMed  Google Scholar 

  23. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. https://doi.org/10.1529/biophysj.106.091116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. https://doi.org/10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48(37):6903–6908. https://doi.org/10.1002/anie.200902073

    Article  CAS  PubMed  Google Scholar 

  26. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176. https://doi.org/10.1002/anie.200802376

    Article  CAS  PubMed  Google Scholar 

  27. van de Linde S, Krstic I, Prisner T, Doose S, Heilemann M, Sauer M (2011) Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem Photobiol Sci 10(4):499–506. https://doi.org/10.1039/c0pp00317d

    Article  CAS  PubMed  Google Scholar 

  28. van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009. https://doi.org/10.1038/nprot.2011.336

  29. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3(11):891–893. https://doi.org/10.1038/nmeth934

    Article  CAS  PubMed  Google Scholar 

  30. Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed Engl 47(29):5465–5469. https://doi.org/10.1002/anie.200801518

    Article  CAS  PubMed  Google Scholar 

  31. Barlag B, Beutel O, Janning D, Czarniak F, Richter CP, Kommnick C, Göser V, Kurre R, Fabiani F, Erhardt M, Piehler J, Hensel M (2016) Single molecule super-resolution imaging of proteins in living Salmonella enterica using self-labelling enzymes. Sci Rep 6:31601. https://doi.org/10.1038/srep31601

  32. Appelhans T, Beinlich FRM, Richter CP, Kurre R, Busch KB (2018) Multi-color localization microscopy of single membrane proteins in organelles of live mammalian cells. J Vis Exp 136. https://doi.org/10.3791/57690

  33. Klein T, Löschberger A, Proppert S, Wolter S, van de Linde S, Sauer M (2011) Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8(1):7–9. https://doi.org/10.1038/nmeth0111-7b

  34. Pang T, Bhutta ZA, Finlay BB, Altwegg M (1995) Typhoid fever and other salmonellosis: a continuing challenge. Trends Microbiol 3(7):253–255

    Article  CAS  PubMed  Google Scholar 

  35. Figueira R, Holden DW (2012) Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 158(Pt 5):1147–1161. https://doi.org/10.1099/mic.0.058115-0

    Article  CAS  PubMed  Google Scholar 

  36. LaRock DL, Chaudhary A, Miller SI (2015) Salmonellae interactions with host processes. Nat Rev Microbiol 13(4):191–205. https://doi.org/10.1038/nrmicro3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moest TP, Meresse S (2013) Salmonella T3SSs: successful mission of the secret(ion) agents. Curr Opin Microbiol 16(1):38–44. https://doi.org/10.1016/j.mib.2012.11.006

  38. Agbor TA, McCormick BA (2011) Salmonella effectors: important players modulating host cell function during infection. Cell Microbiol 13(12):1858–1869. https://doi.org/10.1111/j.1462-5822.2011.01701.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel JC, Galan JE (2005) Manipulation of the host actin cytoskeleton by Salmonella - all in the name of entry. Curr Opin Microbiol 8(1):10–15. https://doi.org/10.1016/j.mib.2004.09.001

  40. Liss V, Swart AL, Kehl A, Hermanns N, Zhang Y, Chikkaballi D, Böhles N, Deiwick J, Hensel M (2017) Salmonella enterica remodels the host cell endosomal system for efficient intravacuolar nutrition. Cell Host Microbe 21(3):390–402. https://doi.org/10.1016/j.chom.2017.02.005

  41. van der Heijden J, Finlay BB (2012) Type III effector-mediated processes in Salmonella infection. Future Microbiol 7(6):685–703. https://doi.org/10.2217/fmb.12.49

    Article  CAS  PubMed  Google Scholar 

  42. Zhao W, Moest T, Zhao Y, Guilhon AA, Buffat C, Gorvel JP, Meresse S (2015) The Salmonella effector protein SifA plays a dual role in virulence. Sci Rep 5:12979. https://doi.org/10.1038/srep12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garcia-del Portillo F, Zwick MB, Leung KY, Finlay BB (1993) Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc Natl Acad Sci U S A 90(22):10544–10548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gerlach RG, Hölzer SU, Jackel D, Hensel M (2007) Rapid engineering of bacterial reporter gene fusions by using red recombination. Appl Environ Microbiol 73(13):4234–4242. https://doi.org/10.1128/AEM.00509-07

  45. Schroeder N, Mota LJ, Meresse S (2011) Salmonella-induced tubular networks. Trends Microbiol 19(6):268–277. https://doi.org/10.1016/j.tim.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  46. Göser V, Kommnick C, Liss V, Hensel M (2019) Self-labeling enzyme tags for analyses of translocation of type III secretion system effector proteins. mBio 10(3):e00769-19. https://doi.org/10.1128/mBio.00769-19.

  47. Kehl A, Hensel M (2015) Live cell imaging of intracellular Salmonella enterica. Methods Mol Biol 1225:199–225. https://doi.org/10.1007/978-1-4939-1625-2_13

    Article  PubMed  Google Scholar 

  48. Serge A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5(8):687–694. https://doi.org/10.1038/nmeth.1233

    Article  CAS  PubMed  Google Scholar 

  49. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5(8):695–702. https://doi.org/10.1038/nmeth.1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant HE 1964/18-2 and SFB 944 project Z to M.H. We like to thank Jacob Piehler (Div. Biophysics) and Rainer Kurre (iBiOs) for continuous support and fruitful discussions, as well as Christian P. Richter (Div. Biophysics) for providing the localization and tracking software and the support during data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hensel .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data Transformation and calculation of UC50 and IC50 data (MP4 3676 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Göser, V., Hensel, M. (2021). Self-Labeling Enzyme Tags for Translocation Analyses of Salmonella Effector Proteins. In: Schatten, H. (eds) Salmonella. Methods in Molecular Biology, vol 2182. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0791-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0791-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0790-9

  • Online ISBN: 978-1-0716-0791-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics