Skip to main content

Mathematical Modeling of Protectant Transport in Tissues

  • Protocol
  • First Online:
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2180))

Abstract

Mass transfer of protectant chemicals is a fundamental aspect of cryopreservation and freeze-drying protocols. As such, mass transfer modeling is useful for design of preservation methods. Cell membrane transport modeling has been successfully used to guide design of preservation methods for isolated cells. For tissues, though, there are several mass transfer modeling challenges that arise from phenomena associated with cells being embedded in a tissue matrix. Both cells and the tissue matrix form a barrier to the free diffusion of water and protective chemicals. Notably, the extracellular space becomes important to model. The response of cells embedded in the tissue is dependent on the state of the extracellular space which varies both spatially and temporally. Transport in the extracellular space can also lead to changes in tissue size. In this chapter, we describe various mass transfer models that can be used to describe transport phenomena occurring during loading of tissues with protective molecules for cryopreservation applications. Assumptions and simplifications that limit the applicability of each of these models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao DY, Liu J, Liu C, Mcgann LE, Watson PF, Kleinhans FW, Mazur P, Critser ES, Critser JK (1995) Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum Reprod 10:1109–1122

    Article  CAS  Google Scholar 

  2. Madden PW, Pegg DE (1992) Calculation of corneal endothelial-cell volume during the addition and removal of cryoprotective compounds. Cryo-Lett 13:43–50

    Google Scholar 

  3. Karlsson JOM, Younis AI, Chan AWS, Gould KG, Eroglu A (2009) Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol Reprod Dev 76:321–333

    Article  CAS  Google Scholar 

  4. Benson JD, Chicone CC, Critser JK (2012) Analytical optimal controls for the state constrained addition and removal of cryoprotective agents. Bull Math Biol 74:1516–1530

    Article  CAS  Google Scholar 

  5. Benson JD, Kearsley AJ, Higgins AZ (2012) Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function. Cryobiology 64:144–151

    Article  CAS  Google Scholar 

  6. Davidson AF, Benson JD, Higgins AZ (2014) Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes. Theor Biol Med Model 11:13

    Article  Google Scholar 

  7. Davidson AF, Glasscock C, McClanahan DR, Benson JD, Higgins AZ (2015) Toxicity minimized cryoprotectant addition and removal procedures for adherent endothelial cells. PLoS One 10:e0142828

    Article  Google Scholar 

  8. Karlsson JO, Szurek EA, Higgins AZ, Lee SR, Eroglu A (2013) Optimization of cryoprotectant loading into murine and human oocytes. Cryobiology 68:18–28

    Article  Google Scholar 

  9. Mukherjee IN, Li Y, Song YC, Long RC, Sambanis A (2008) Cryoprotectant transport through articular cartilage for long-term storage: experimental and modeling studies. Osteoarthr Cartil 16:1379–1386

    Article  CAS  Google Scholar 

  10. Benson JD, Higgins AZ, Desai K, Eroglu A (2018) A toxicity cost function approach to optimal CPA equilibration in tissues. Cryobiology 80:144–155

    Article  Google Scholar 

  11. Han X, Ma L, Benson J, Brown A, Critser JK (2009) Measurement of the apparent diffusivity of ethylene glycol in mouse ovaries through rapid MRI and theoretical investigation of cryoprotectant perfusion procedures. Cryobiology 58:298–302

    Article  CAS  Google Scholar 

  12. He YM, Devireddy RV (2005) An inverse approach to determine solute and solvent permeability parameters in artificial tissues. Ann Biomed Eng 33:709–718

    Article  Google Scholar 

  13. Devireddy RV (2005) Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water. Mol Reprod Dev 70:333–343

    Article  CAS  Google Scholar 

  14. Hubel A, Bidault N, Hammer B (2002) Transport characteristics of glycerol and propylene glycol in an engineered dermal replacement. ASME Conf Proc 2002(36509):121–122

    Google Scholar 

  15. Muldrew K, Sykes B, Schachar N, McGann LE (1996) Permeation kinetics of dimethyl sulfoxide in articular cartilage. Cryo-Lett 17:331–340

    CAS  Google Scholar 

  16. Zieger MA, Woods EJ, Lakey JR, Liu J, Critser JK (1999) Osmotic tolerance limits of canine pancreatic islets. Cell Transplant 8:277–284

    Article  CAS  Google Scholar 

  17. Jomha NM, Law GK, Abazari A, Rekieh K, Elliott JAW, McGann LE (2009) Permeation of several cryoprotectant agents into porcine articular cartilage. Cryobiology 58:110–114

    Article  CAS  Google Scholar 

  18. Papanek TH (1978) The water permeability of the human erythrocyte in the temperature range +25 °C to −10 °C. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  19. Mullen SF, Li M, Li Y, Chen ZJ, Critser JK (2008) Human oocyte vitrification: the permeability of metaphase II oocytes to water and ethylene glycol and the appliance toward vitrification. Fertil Steril 89:1812–1825

    Article  Google Scholar 

  20. Woods E (1999) Water and cryoprotectant permeability characteristics of isolated human and canine pancreatic islets. Cell Transplant 8:549–559

    Article  CAS  Google Scholar 

  21. Liu J, Zieger MA, Lakey JR, Woods EJ, Critser JK (1997) The determination of membrane permeability coefficients of canine pancreatic islet cells and their application to islet cryopreservation. Cryobiology 35:1–13

    Article  CAS  Google Scholar 

  22. Abazari A, Elliott JA, Law GK, McGann LE, Jomha NM (2009) A biomechanical triphasic approach to the transport of nondilute solutions in articular cartilage. Biophys J 97:3054–3064

    Article  CAS  Google Scholar 

  23. Xu X, Cui Z, Urban JPG (2003) Measurement of the chondrocyte membrane permeability to Me2SO, glycerol and 1,2-propanediol. Med Eng Phys 25:573–579

    Article  CAS  Google Scholar 

  24. Vasquez-Rivera A, Sommer KK, Oldenhof H, Higgins AZ, Brockbank KGM, Hilfiker A, Wolkers WF (2018) Simultaneous monitoring of different vitrification solution components permeating into tissues. Analyst 143:420–428

    Article  CAS  Google Scholar 

  25. Comper WD, Laurent TC (1978) Physiological function of connective-tissue polysaccharides. Physiol Rev 58:255–315

    Article  CAS  Google Scholar 

  26. Forbes RM, Cooper AR, Mitchell HH (1953) The composition of the adult human body as determined by chemical analysis. J Biol Chem 203:359–366

    CAS  PubMed  Google Scholar 

  27. Kojima J, Nakamura N, Kanatani M, Omori K (1975) The glycosaminoglycans in human hepatic cancer. Cancer Res 35:542–547

    CAS  PubMed  Google Scholar 

  28. Aukland K, Nicolaysen G (1981) Interstitial fluid volume – local regulatory mechanisms. Physiol Rev 61:556–643

    Article  CAS  Google Scholar 

  29. Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular-cartilage. J Biomech Eng 113:245–258

    Article  CAS  Google Scholar 

  30. de Freitas RC, Diller KR, Lachenbruch CA, Merchant FA (2006) Network thermodynamic model of coupled transport in a multicellular tissue the islet of Langerhans. Ann N Y Acad Sci 858:191–204

    Google Scholar 

  31. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  32. Shardt N, Al-Abbasi KK, Yu H, Jomha NM, McGann LE, Elliott JAW (2016) Cryoprotectant kinetic analysis of a human articular cartilage vitrification protocol. Cryobiology 73:80–92

    Article  CAS  Google Scholar 

  33. Jomha NM, Elliott JA, Law GK, Maghdoori B, Forbes JF, Abazari A, Adesida AB, Laouar L, Zhou X, McGann LE (2012) Vitrification of intact human articular cartilage. Biomaterials 33:6061–6068

    Article  CAS  Google Scholar 

  34. Bhowmick S, Khamis CA, Bischof JC (1998) Response of a liver tissue slab to a hyperosmotic sucrose boundary condition: Microscale cellular and vascular level effects. Ann NY Acad Sci 858:147–162

    Google Scholar 

  35. Cui ZF, Dykhuizen RC, Nerem RM, Sembanis A (2002) Modeling of cryopreservation of engineered tissues with one-dimensional geometry. Biotechnol Prog 18:354–361

    Article  Google Scholar 

  36. Xu X, Cui ZF (2003) Modeling of the co-transport of cryoprotective agents in a porous medium as a model tissue. Biotechnol Prog 19:972–981

    Article  CAS  Google Scholar 

  37. Benson JD, Benson CT, Critser JK (2014) Mathematical model formulation and validation of water and solute transport in whole hamster pancreatic islets. Math Biosci 254:64–75

    Article  CAS  Google Scholar 

  38. Elliott JAW, Prickett RC, Elmoazzen HY, Porter KR, McGann LE (2007) A multisolute osmotic virial equation for solutions of interest in biology. J Phys Chem B 111:1775–1785

    Article  CAS  Google Scholar 

  39. Elmoazzen HY, Elliott JA, McGann LE (2009) Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation. Biophys J 96:2559–2571

    Article  CAS  Google Scholar 

  40. Shaozhi Z, Pegg DE (2007) Analysis of the permeation of cryoprotectants in cartilage. Cryobiology 54:146–153

    Article  Google Scholar 

  41. Benson J, Abrams J (2018) An agent based model of cell level toxicity accumulation and intercellular mechanics during cpa equilibration in ovarian follicles. Cryobiology 85:153–154

    Google Scholar 

  42. Warner RM, Higgins AZ (2018) Biomechanical model of cryoprotectant transport in tissues with high cell density. Cryobiology 85:154–154

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from NIH grant R01 EB027203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Z. Higgins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Warner, R.M., Higgins, A.Z. (2021). Mathematical Modeling of Protectant Transport in Tissues. In: Wolkers, W.F., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 2180. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0783-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0783-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0782-4

  • Online ISBN: 978-1-0716-0783-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics