Skip to main content

Inotersen for the Treatment of Hereditary Transthyretin Amyloidosis

  • Protocol
  • First Online:
Gapmers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2176))

Abstract

Hereditary transthyretin amyloidosis (hATTR) is a rare autosomal dominant condition in which mutations in the transthyretin gene cause amyloid fibrils to develop and deposit into tissues, affecting primarily the nerves and heart causing polyneuropathy and cardiomyopathy respectively. Standard treatment has been liver transplants to try and eliminate the mutated transthyretin products as the liver is the main source of transthyretin production. A new drug named inotersen (brand name Tagsedi), also known as IONIS-TTRRX, has been approved by the United States Food and Drug Agency, Health Canada, and European Commission in 2018, and introduced to the market for patients in stage 1 and stage 2 hATTR polyneuropathy. Inotersen is a second-generation antisense oligonucleotide with 2′-O-methoxyethyl modification designed to bind to the 3′ untranslated region of the transthyretin mRNA in the nucleus of the liver cells. By doing so, it prevents the production of the mutant and wild-type forms of transthyretin, impeding the progression of the disease. In this article, the mechanism of action and safety profile of inotersen will be discussed along with some future directions following its approval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palladini G, Merlini G (2016) What is new in diagnosis and management of light chain amyloidosis? Blood 128(2):159–168. https://doi.org/10.1182/blood-2016-01-629790

    Article  CAS  PubMed  Google Scholar 

  2. Sekijima Y (2015) Transthyretin (ATTR) amyloidosis: clinical spectrum, molecular pathogenesis and disease-modifying treatments. J Neurol Neurosurg Psychiatry 86(9):1036–1043. https://doi.org/10.1136/jnnp-2014-308724

    Article  PubMed  Google Scholar 

  3. Gertz MA (2017) Hereditary ATTR amyloidosis: burden of illness and diagnostic challenges. Am J Manag Care 23(7 Suppl):S107–S112

    PubMed  Google Scholar 

  4. Gertz MA, Benson MD, Dyck PJ et al (2015) Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol 66(21):2451–2466. https://doi.org/10.1016/j.jacc.2015.09.075

    Article  CAS  PubMed  Google Scholar 

  5. Mathew V, Wang AK (2019) Inotersen: new promise for the treatment of hereditary transthyretin amyloidosis. Drug Des Devel Ther 13:1515–1525. https://doi.org/10.2147/DDDT.S162913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buxbaum JN (2018) Oligonucleotide drugs for transthyretin amyloidosis. N Engl J Med 379(21):2086. https://doi.org/10.1056/NEJMc1810994

    Article  PubMed  Google Scholar 

  7. Johnson SM, Connelly S, Fearns C et al (2012) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol 421(2–3):185–203. https://doi.org/10.1016/j.jmb.2011.12.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adams D, Gonzalez-Duarte A, O’Riordan WD et al (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379(1):11–21. https://doi.org/10.1056/NEJMoa1716153

    Article  CAS  PubMed  Google Scholar 

  9. Keam SJ (2018) Inotersen: first global approval. Drugs 78(13):1371–1376. https://doi.org/10.1007/s40265-018-0968-5

    Article  CAS  PubMed  Google Scholar 

  10. Mickle K, Lasser KE, Hoch JS et al (2019) The effectiveness and value of patisiran and inotersen for hereditary transthyretin amyloidosis. J Manag Care Spec Pharm 25(1):10–15. https://doi.org/10.18553/jmcp.2019.25.1.010

    Article  PubMed  Google Scholar 

  11. Gales L (2019) Tegsedi (inotersen): an antisense oligonucleotide approved for the treatment of adult patients with hereditary transthyretin amyloidosis. Pharmaceuticals (Basel) 12(2). https://doi.org/10.3390/ph12020078

  12. Adams D, Suhr OB, Dyck PJ et al (2017) Trial design and rationale for APOLLO, a phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol 17(1):181. https://doi.org/10.1186/s12883-017-0948-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Al Shaer D, Al Musaimi O, Albericio F et al (2019) 2018 FDA tides harvest. Pharmaceuticals (Basel) 12(2). https://doi.org/10.3390/ph12020052

  14. Summers JS, Shaw BR (2001) Boranophosphates as mimics of natural phosphodiesters in DNA. Curr Med Chem 8(10):1147–1155

    Article  CAS  Google Scholar 

  15. Ackermann EJ, Guo S, Benson MD et al (2016) Suppressing transthyretin production in mice, monkeys and humans using 2nd-generation antisense oligonucleotides. Amyloid 23(3):148–157. https://doi.org/10.1080/13506129.2016.1191458

    Article  CAS  PubMed  Google Scholar 

  16. Benson MD, Kluve-Beckerman B, Zeldenrust SR et al (2006) Targeted suppression of an amyloidogenic transthyretin with antisense oligonucleotides. Muscle Nerve 33(5):609–618. https://doi.org/10.1002/mus.20503

    Article  CAS  PubMed  Google Scholar 

  17. Benson MD, Dasgupta NR, Rissing SM et al (2017) Safety and efficacy of a TTR specific antisense oligonucleotide in patients with transthyretin amyloid cardiomyopathy. Amyloid 24(4):219–225. https://doi.org/10.1080/13506129.2017.1374946

    Article  CAS  PubMed  Google Scholar 

  18. Benson MD, Waddington-Cruz M, Berk JL et al (2018) Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 379(1):22–31. https://doi.org/10.1056/NEJMoa1716793

    Article  CAS  PubMed  Google Scholar 

  19. Lu QL, Liang HD, Partridge T, Blomley MJ (2003) Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 10(5):396–405

    Article  CAS  Google Scholar 

  20. Yu RZ, Grundy JS, Geary RS (2013) Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin Drug Metab Toxicol 9(2):169–182. https://doi.org/10.1517/17425255.2013.737320

    Article  CAS  PubMed  Google Scholar 

  21. Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5(4):381–391. https://doi.org/10.1517/17425250902877680

    Article  CAS  PubMed  Google Scholar 

  22. NIH US National Library of Medicine : Open-Label Extension Assessing Long Term Safety and Efficacy of IONIS-TTR Rx in Familial Amyloid Polyneuropathy (FAP). https://clinicaltrials.gov/ct2/show/NCT02175004. Accessed 11 July 2019

  23. Adams AM, Harding PL, Iversen PL et al (2007) Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries. BMC Mol Biol 8:57

    Article  Google Scholar 

  24. Echigoya Y, Nakamura A, Nagata T et al (2017) Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 114(16):4213–4218. https://doi.org/10.1073/pnas.1613203114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu QL, Rabinowitz A, Chen YC et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102(1):198–203. https://doi.org/10.1073/pnas.0406700102

    Article  CAS  PubMed  Google Scholar 

  26. Ezzat K, Aoki Y, Koo T et al (2015) Self-assembly into nanoparticles is essential for receptor mediated uptake of therapeutic antisense oligonucleotides. Nano Lett 15(7):4364–4373. https://doi.org/10.1021/acs.nanolett.5b00490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walker I, Irwin WJ, Akhtar S (1995) Improved cellular delivery of antisense oligonucleotides using transferrin receptor antibody-oligonucleotide conjugates. Pharm Res 12(10):1548–1553

    Article  CAS  Google Scholar 

  28. Echigoya Y, Aoki Y, Miskew B et al (2015) Long-term efficacy of systemic multiexon skipping targeting dystrophin exons 45-55 with a cocktail of vivo-morpholinos in mdx52 mice. Mol Ther Nucleic Acids 4:e225. https://doi.org/10.1038/mtna.2014.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wen Shen, Cheryl L. De Hoyos, Michael T. Migawa, Timothy A. Vickers, Hong Sun, Audrey Low, Thomas A. Bell, Meghdad Rahdar, Swagatam Mukhopadhyay, Christopher E. Hart, Melanie Bell, Stan Riney, Susan F. Murray, Sarah Greenlee, Rosanne M. Crooke, Xue-hai Liang, Punit P. Seth, Stanley T. Crooke, (2019) Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nature Biotechnology 37(6):640–650

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mahfouz, M., Maruyama, R., Yokota, T. (2020). Inotersen for the Treatment of Hereditary Transthyretin Amyloidosis. In: Yokota, T., Maruyama, R. (eds) Gapmers. Methods in Molecular Biology, vol 2176. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0771-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0771-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0770-1

  • Online ISBN: 978-1-0716-0771-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics