Skip to main content

Development of LNA Gapmer Oligonucleotide-Based Therapy for ALS/FTD Caused by the C9orf72 Repeat Expansion

  • Protocol
  • First Online:
Gapmers

Abstract

Several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), have a complex genetic background, in addition to cases where the disease appears to manifest sporadically. The recent discovery of the hexanucleotide repeat expansion in the C9orf72 gene as the causative agent of ALS (C9ALS) gives rise to the opportunity to develop new therapies directed at this mutation , which is responsible for a large proportion of ALS and/or frontotemporal dementia cases. Mammalian models conscientiously replicating the late-onset motor defects and cellular pathologies seen in human patients do not exist. In this context, patient-derived cells give us a platform to test potential antisense oligonucleotide therapies, which could be the key to treat this subtype of motor neuron disease. Recently, we described that locked nucleic acid gapmer oligonucleotide-based treatment targeting C9orf72 repeat expanded transcripts resulted in recovery from the disease-related phenotypes in patient-derived fibroblasts. Our findings highlight the therapeutic potential of C9ALS using this gapmer oligonucleotide-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC Hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  CAS  Google Scholar 

  2. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  Google Scholar 

  3. Gijselinck I, Van Langenhove T, van der Zee J et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11:54–65

    Article  CAS  Google Scholar 

  4. Gendron TF, Bieniek KF, Zhang YJ et al (2013) Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 126:829–844

    Article  CAS  Google Scholar 

  5. Lagier-Tourenne C, Baughn M, Rigo F et al (2013) Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci U S A 110(47):E4530–E4539

    Article  CAS  Google Scholar 

  6. Cooper-Knock J, Higginbottom A, Stopford MJ et al (2015) Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathol 130:63–75

    Article  CAS  Google Scholar 

  7. van Blitterswijk M, Dejesus-hernandez M, Niemantsverdriet E et al (2013) Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions ( Xpansize-72 ): a cross-sectional cohort study. Lancet Neurol 12:978–988

    Article  Google Scholar 

  8. van Blitterswijk M, Gendron TF, Baker MC et al (2015) Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathol 130:863–876

    Article  Google Scholar 

  9. Cruts M, Gijselinck I, Van Langenhove T et al (2013) Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends Neurosci 36:450–459

    Article  CAS  Google Scholar 

  10. Almeida S, Gascon E, Tran H et al (2013) Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol 126:385–399

    Article  CAS  Google Scholar 

  11. Haeusler AR, Donnelly CJ, Periz G et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200

    Article  CAS  Google Scholar 

  12. Zhou B, Liu C, Geng Y et al (2015) Topology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD. Sci Rep 5:16673

    Article  Google Scholar 

  13. Sareen D, O’Rourke JG, Meera P et al (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl med 5:208ra149. Sci Transl Med 5(208):208ra149

    Article  Google Scholar 

  14. Cooper-Knock J, Walsh MJ, Higginbottom A et al (2014) Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain 137(Pt 7):2040–2051

    Article  Google Scholar 

  15. Lee YB, Chen HJ, Peres J et al (2013) Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 5:1178–1186

    Article  CAS  Google Scholar 

  16. Mann DM, Robinson A, Rollinson S et al (2013) Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol Commun 1:1

    Article  Google Scholar 

  17. Mori K, Weng S, Arzberger T et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1339

    Article  CAS  Google Scholar 

  18. Ash PEA, Bieniek KF, Gendron TF et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646

    Article  CAS  Google Scholar 

  19. Jovičić A, Mertens J, Boeynaems S et al (2015) Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 18:1226–1229

    Article  Google Scholar 

  20. Zhang K, Donnelly CJ, Haeusler AR et al (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525(7567):56–61

    Article  CAS  Google Scholar 

  21. Freibaum BD, Lu Y, Lopez-Gonzalez R et al (2015) GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525(7567):129–133

    Article  CAS  Google Scholar 

  22. Moens TG, Niccoli T, Wilson KM et al (2019) C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A. Acta Neuropathol 137(3):487–500

    Article  CAS  Google Scholar 

  23. Donnelly CJ, Zhang PW, Pham JT et al (2013) RNA toxicity from the ALS / FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–428

    Article  CAS  Google Scholar 

  24. O’Rourke JG, Bogdanik L, Muhammad AKMG et al (2015) C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron 88:892–901

    Article  Google Scholar 

  25. Jiang J, Zhu Q, Gendron TF et al (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90:535–550

    Article  CAS  Google Scholar 

  26. Mendell JR, Al-Zaidy S, Shell R et al (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377:1713–1722

    Article  CAS  Google Scholar 

  27. Shimizu-Motohashi Y, Miyatake S, Komaki H et al (2016) Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. Am J Transl Res 8:2471–2489

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Levine TP, Daniels RD, Gatta AT et al (2013) The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. 29:499–503

    Google Scholar 

  29. Marat AL, Dokainish H, McPherson PS (2011) DENN domain proteins: Regulators of Rab GTPases. J Biol Chem 286:13791–13800

    Google Scholar 

  30. Farg MA, Sundaramoorthy V, Sultana JM et al (2014) C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet 23:3579–3595

    Google Scholar 

  31. Aoki Y, Manzano R, Lee Y, et al (2017) C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. 140:887–897

    Google Scholar 

  32. Corbier C, Sellier C (2017) C9ORF72 is a GDP/GTP exchange factor for Rab8 and Rab39 and regulates autophagy. Small GTPases 8:181–186

    Google Scholar 

  33. Webster CP, Smith EF, Bauer CS, et al (2016) The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 1–21

    Google Scholar 

  34. Yang M, Liang C, Swaminathan K et al (2016) A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Neurosci Lett 1–17

    Google Scholar 

  35. Amick J, Roczniak-Ferguson A, Ferguson SM (2016) C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol Biol Cell 27:3040–3051

    Google Scholar 

  36. Sullivan PM, Zhou X, Robins AM et al (2016) The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 4:51

    Google Scholar 

  37. Obika S, Nanbu D, Hari Y et al (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed c3-endo sugar puckering. Tetrahedron Lett 38:8735–8738

    Article  CAS  Google Scholar 

  38. Inoue H, Hayase Y, Iwai S et al (1987) Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H. FEBS Lett 215:327–330

    Article  CAS  Google Scholar 

  39. Kurreck J, Wyszko E, Gillen C et al (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30:1911–1918

    Article  CAS  Google Scholar 

  40. Fedoroff OY, Salazar M, Reid BR (1993) Structure of a DNA : RNA hybrid duplex. J Mol Biol 233(3):509–523

    Article  CAS  Google Scholar 

  41. Crooke ST (1999) Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1489:31–43

    Article  CAS  Google Scholar 

  42. Shen W, De Hoyos CL, Migawa MT et al (2019) Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat Biotechnol 37:640–650

    Article  CAS  Google Scholar 

  43. Migawa MT, Shen W, Wan WB et al (2019) Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Nucleic Acids Res 47:5465–5479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (C) [grant number 18 K11067 to N.M and 18 K07544 to Y.A.], Grants-in-Aid for Research on Nervous and Mental Disorders [grant number 28-6 to Y.A.], and the Japan Agency for Medical Research and Development [grant numbers 19ek0109239h0003 and 19lm0203086h0001 to Y.A.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitsugu Aoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sathyaprakash, C. et al. (2020). Development of LNA Gapmer Oligonucleotide-Based Therapy for ALS/FTD Caused by the C9orf72 Repeat Expansion. In: Yokota, T., Maruyama, R. (eds) Gapmers. Methods in Molecular Biology, vol 2176. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0771-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0771-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0770-1

  • Online ISBN: 978-1-0716-0771-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics