Skip to main content

A Revised Adaptation of the Smart-Seq2 Protocol for Single-Nematode RNA-Seq

  • Protocol
  • First Online:
RNA Abundance Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2170))

Abstract

The advancement of transcriptomic studies in plant parasitic nematodes will greatly benefit from the development of single-nematode RNA-seq methods. Since many plant parasitic nematodes are obligate parasites, it is often difficult to efficiently obtain sufficient amounts of nematodes for transcriptomic studies. Here we have adapted SMART-Seq2 for single-nematode RNA-seq requiring only an individual nematode for a sample replicate. This protocol provides a detailed step-by-step procedure of the RNA-seq workflow starting from lysis of the nematode to quantification of transcripts using a user-friendly online platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gerard GF, Fox DK, Nathan M, Dalessio JM (1997) Reverse transcriptase—the use of cloned moloney murine leukemia virus reverse transcriptase to synthesize DNA from RNA. Mol Biotechnol 8:61–77. https://doi.org/10.1007/bf02762340

    Article  CAS  PubMed  Google Scholar 

  2. Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART (TM) approach for full-length cDNA library construction. BioTechniques 30:892–897. https://doi.org/10.2144/01304pf02

    Article  CAS  PubMed  Google Scholar 

  3. Chenchik A, Diachenko L, Moqadam F, Tarabykin V, Lukyanov S, Siebert PD (1996) Full-length cDNA cloning and determination of mRNA 5′ and 3′ ends by amplification of adaptor-ligated cDNA. BioTechniques 21:526–534

    Article  CAS  Google Scholar 

  4. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098. https://doi.org/10.1038/nmeth.2639

    Article  CAS  PubMed  Google Scholar 

  5. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9:171–181. https://doi.org/10.1038/nprot.2014.006

    Article  CAS  PubMed  Google Scholar 

  6. Kulpa D, Topping R, Telesnitsky A (1997) Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J 16:856–865. https://doi.org/10.1093/emboj/16.4.856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81. https://doi.org/10.1016/s0167-7799(02)00038-0

    Article  CAS  PubMed  Google Scholar 

  8. Picelli S (2017) Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol 14:637–650. https://doi.org/10.1080/15476286.2016.1201618

    Article  PubMed  Google Scholar 

  9. Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ, Korkin D, Mitchum MG (2018) Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci Rep 8:15. https://doi.org/10.1038/s41598-018-20536-5

    Article  CAS  Google Scholar 

  10. Kumar M, Gantasala NP, Roychowdhury T, Thakur PK, Banakar P, Shukla RN, Jones MGK, Rao U (2014) De Novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae. PLoS One 9:16. https://doi.org/10.1371/journal.pone.0096311

    Article  CAS  Google Scholar 

  11. Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, Tsai IJ, Beasley H, Blok V, Cock PJA, Eves-van den Akker S, Holroyd N, Hunt M, Mantelin S, Naghra H, Pain A, Palomares-Rius JE, Zarowiecki M, Berriman M, Jones JT, Urwin PE (2014) The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol 15:17. https://doi.org/10.1186/gb-2014-15-3-r43

    Article  CAS  Google Scholar 

  12. Eves-van den Akker S, Lilley CJ, Danchin EGJ, Rancurel C, Cock PJA, Urwin PE, Jones JT (2014) The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biol Evol 6:2181–2194. https://doi.org/10.1093/gbe/evu171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi I, Subramanian P, Shim D, Oh BJ, Hahn BS (2017) RNA-Seq of plant-parasitic nematode Meloidogyne incognita at various stages of its development. Front Genet 8:3. https://doi.org/10.3389/fgene.2017.00190

    Article  CAS  Google Scholar 

  14. Perry RN, Moens M (2011) Survival of parasitic nematodes outside the host. In: Perry RN, Wharton DA (eds) Molecular and physiological basis of nematode survival. Cabi Publishing-C a B Int, Wallingford, pp 1–27

    Chapter  Google Scholar 

  15. Grencis R, Harnett W (2011) Survival of animal-parasitic nematodes inside the animal host. In: Perry RN, Wharton DA (eds) Molecular and physiological basis of nematode survival. Cabi Publishing-C a B Int, Wallingford, pp 66–85

    Chapter  Google Scholar 

  16. Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-Lopez R, Palomares-Rius JE, Wesemael WML, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961. https://doi.org/10.1111/mpp.12057

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moens M, Perry RN (2009) Migratory plant endoparasitic nematodes: a group rich in contrasts and divergence. Annu Rev Phytopathol 47:313–332. https://doi.org/10.1146/annurev-phyto-080508-081846

    Article  CAS  PubMed  Google Scholar 

  18. Bell CA, Lilley CJ, McCarthy J, Atkinson HJ, Urwin PE (2019) Plant-parasitic nematodes respond to root exudate signals with host-specific gene expression patterns. PLoS Pathog 15:19. https://doi.org/10.1371/journal.ppat.1007503

    Article  CAS  Google Scholar 

  19. Trombetta JJ, Gennert D, Lu D, Satija R, Shalek AK, Regev A (2014) Preparation of single-cell RNA-Seq libraries for next generation sequencing. Curr Protoc Mol Biol 107:4.22.21–4.22.17. https://doi.org/10.1002/0471142727.mb0422s107

    Article  Google Scholar 

  20. Serra L, Chang D, Macchietto M, Williams K, Murad R, Lu D, Dillman AR, Mortazavi A (2018) Adapting the Smart-seq2 protocol for robust single worm RNA-seq. Bio Protoc 8:e2729. https://doi.org/10.21769/BioProtoc.2729

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lu DH, Macchietto M, Chang D, Barros MM, Baldwin J, Mortazavi A, Dillman AR (2017) Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathog 13:31. https://doi.org/10.1371/journal.ppat.1006302

    Article  CAS  Google Scholar 

  22. Macchietto M, Angdembey D, Heidarpour N, Serra L, Rodriguez B, El-Ali N, Mortazavi A (2017) Comparative transcriptomics of Steinernema and Caenorhabditis single embryos reveals orthologous gene expression convergence during late embryogenesis. Genome Biol Evol 9:2681–2696. https://doi.org/10.1093/gbe/evx195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Gruning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D (2018) The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544. https://doi.org/10.1093/nar/gky379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2016) Salmon provides accurate, fast, and bias-aware transcript expression estimates using dual-phase inference. bioRxiv:021592. https://doi.org/10.1101/021592

  25. Shaham S (2006) Methods in cell biology. WormBook. https://doi.org/10.1895/wormbook.1.49.1

  26. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.21–21.29.29. https://doi.org/10.1002/0471142727.mb2129s109

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NIH NIAID R21 AI142121 to A. Dillman.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Mortazavi or Adler Dillman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, D., Serra, L., Lu, D., Mortazavi, A., Dillman, A. (2021). A Revised Adaptation of the Smart-Seq2 Protocol for Single-Nematode RNA-Seq. In: Jin, H., Kaloshian, I. (eds) RNA Abundance Analysis . Methods in Molecular Biology, vol 2170. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0743-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0743-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0742-8

  • Online ISBN: 978-1-0716-0743-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics