Skip to main content

The MULTICOM Protein Structure Prediction Server Empowered by Deep Learning and Contact Distance Prediction

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2165))

Abstract

Prediction of the three-dimensional (3D) structure of a protein from its sequence is important for studying its biological function. With the advancement in deep learning contact distance prediction and residue–residue coevolutionary analysis, significant progress has been made in both template-based and template-free protein structure prediction in the last several years. Here, we provide a practical guide for our latest MULTICOM protein structure prediction system built on top of the latest advances, which was rigorously tested in the 2018 CASP13 experiment. Its specific functionalities include: (1) prediction of 1D structural features (secondary structure, solvent accessibility, disordered regions) and 2D interresidue contacts; (2) domain boundary prediction; (3) template-based (or homology) 3D structure modeling; (4) contact distance-driven ab initio 3D structure modeling; and (5) large-scale protein quality assessment enhanced by deep learning and predicted contacts. The MULTICOM web server (http://sysbio.rnet.missouri.edu/multicom_cluster/) presents all the 1D, 2D, and 3D prediction results and quality assessment to users via user-friendly web interfaces and e-mails. The source code of the MULTICOM package is also available at https://github.com/multicom-toolbox/multicom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The UniProt Consortium (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res 46(5):2699

    Article  PubMed  Google Scholar 

  2. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Z, Eickholt J, Cheng J (2010) MULTICOM: a multi-level combination approach to protein structure prediction and its assessments in CASP8. Bioinformatics 26(7):882–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hou J, Wu T, Cao R, Cheng J (2019) Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Proteins 87(12):1165–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 15(1):5.6.1–5.6.30

    Article  Google Scholar 

  6. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta, Methods in enzymology, vol 383. Elsevier, Amsterdam, pp 66–93

    Google Scholar 

  7. Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M (2011) Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U S A 108(49):E1293–E1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adhikari B, Hou J, Cheng J (2017) DNCON2: Improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics 34(9):1466–1472

    Article  PubMed Central  Google Scholar 

  9. Wang S, Sun S, Li Z, Zhang R, Xu J (2017) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput Biol 13(1):e1005324

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adhikari B, Cheng J (2018) CONFOLD2: improved contact-driven ab initio protein structure modeling. BMC Bioinformatics 19(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  11. Abriata LA, Tamò GE, Monastyrskyy B, Kryshtafovych A, Dal Peraro M (2018) Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods. Proteins 86:97–112

    Article  CAS  PubMed  Google Scholar 

  12. Cao R, Bhattacharya D, Adhikari B, Li J, Cheng J (2016) Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11. Proteins 84:247–259

    Article  PubMed  Google Scholar 

  13. Cao R, Bhattacharya D, Adhikari B, Li J, Cheng J (2015) Large-scale model quality assessment for improving protein tertiary structure prediction. Bioinformatics 31(12):i116–i123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li J, Deng X, Eickholt J, Cheng J (2013) Designing and benchmarking the MULTICOM protein structure prediction system. BMC Struct Biol 13(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Remmert M, Biegert A, Hauser A, Söding J (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9(2):173

    Article  CAS  Google Scholar 

  16. Magnan CN, Baldi PJB (2014) SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 30(18):2592–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deng X, Eickholt J, Cheng J (2009) PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinformatics 10(1):436

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bhattacharya D, Cao R, Cheng J (2016) UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling. Bioinformatics 32(18):2791–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhattacharya D, Cheng J (2015) De novo protein conformational sampling using a probabilistic graphical model. Sci Rep 5:16332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng J (2008) A multi-template combination algorithm for protein comparative modeling. BMC Struct Biol 8(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  23. Schrodinger L (2010) The PyMOL molecular graphics system. Version 1.3r1

    Google Scholar 

  24. Sayle R (1992) RasMol v2.5

    Google Scholar 

  25. Adhikari B, Nowotny J, Bhattacharya D, Hou J, Cheng J (2016) ConEVA: a toolbox for comprehensive assessment of protein contacts. BMC Bioinformatics 17(1):517

    Article  PubMed  PubMed Central  Google Scholar 

  26. Söding JJB (2004) Protein homology detection by HMM–HMM comparison. Bioinformatics 21(7):951–960

    Article  PubMed  Google Scholar 

  27. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57(4):702–710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by an NIH grant (R01GM093123) and NSF grants (IIS1763246 and DBI1759934) to J.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hou, J., Wu, T., Guo, Z., Quadir, F., Cheng, J. (2020). The MULTICOM Protein Structure Prediction Server Empowered by Deep Learning and Contact Distance Prediction. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 2165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0708-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0708-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0707-7

  • Online ISBN: 978-1-0716-0708-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics