Skip to main content

Characterization of Schistosoma mansoni Dihydrofolate Reductase (DHFR)

  • Protocol
  • First Online:
Schistosoma mansoni

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2151))

Abstract

Dihydrofolate reductase (DHFR) is an essential enzyme for nucleotide metabolism used to obtain energy and structural nucleic acids. Schistosoma mansoni has all the pathways for pyrimidine biosynthesis, which include the thymidylate cycle and, consequentially, the DHFR enzyme. Here, we describe the characterization of Schistosoma mansoni DHFR (SmDHFR) using isothermal titration calorimetry for the enzymatic activity and thermodynamic determination, also the folate analogs inhibition. Moreover, X-ray crystallography was used to determine the enzyme atomic model at 1.95 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Senft AW, Crabtree GW (1983) Purine metabolism in the schistosomes: potential targetsfor chemotherapy. Pharmacol Ther 20:341–356

    Article  CAS  PubMed  Google Scholar 

  2. Senft AW, Miech RP, Brown PR, Senft DG (1972) Purine metabolism in Schistosoma mansoni. Int J Parasitol 2:249–260

    Article  CAS  PubMed  Google Scholar 

  3. Senft AW, Senft DG, Miech RP (1973) Pathways of nucleotide metabolism in Schistosoma mansoni. disposition of adenosine by whole worms. Biochem Pharmacol 22:437–447

    Article  CAS  PubMed  Google Scholar 

  4. Serrão VHB, Romanello L, Cassago A, Torini JR, Cheleski J, deMarco R, Brandão-Neto J, Pereira HM (2017) Structure and kinetics assays of recombinant Schistosoma mansoni dihydrofolate reductase. Acta Trop 170:190–195

    Article  PubMed  Google Scholar 

  5. Jaffe JJ, McCormack JJ, Meymarian E (1972) Comparative properties of schistosomal and filarial dihydrofolate reductases. Biochem Pharmacol 21:719–731

    Article  CAS  PubMed  Google Scholar 

  6. Jarabak J, Bachur NR (1971) A soluble dihydrofolate reductase from human placenta: purification and properties. Arch Biochem Biophys 142:417–425

    Article  CAS  PubMed  Google Scholar 

  7. Liu CT, Hanoian P, French JB, Pringle TH, Hammes-Schiffer S, Benkovic SJ (2013) Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans. Proc Natl Acad Sci U S A 110:10159–10164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Todd MT, Gomez J (2001) Enzyme kinetics determined using calorimetry: general assayforenzymeactivity? Anal Biochem 296:179–187

    Article  CAS  PubMed  Google Scholar 

  9. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137

    Article  CAS  PubMed  Google Scholar 

  10. Dauter Z, Wlodawer A (2016) Progress in protein crystallography. Protein Pept Lett 23(3):201–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lattman EE (1994) Protein crystallography for all. Proteins 18(2):103–106

    Article  CAS  PubMed  Google Scholar 

  12. McPherson A, Gavira JA (2013) Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun 70:2–20

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taylor G (2003) The phase problem. Acta Crystallogr D Biol Crystallogr 59:1881–1890

    Article  PubMed  Google Scholar 

  14. Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S (2017) Protein data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol 1607:627–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scapin G (2013) Molecular replacement then and now. Acta Crystallogr D Biol Crystallogr 69:2266–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abergel C (2013) Molecular replacement: tricks and treats. Acta Crystallogr D Biol Crystallogr 69:2167–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pedrini B, Serrano P, Mohanty B, Geralt M, Wüthrich K (2013) NMR-profiles of protein solutions. Biopolymers 99(11):825–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Egelman EH (2016) The current revolution in Cryo-EM. Biophys J 110:1008–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D60:2126–2132

    CAS  Google Scholar 

  22. The PyMOL Molecular Graphics System, Version 2.0. LLC, Schrödinger

    Google Scholar 

Download references

Acknowledgments

We acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grants 2012/23730-1 (VHBS), 2014/16005-4 and 2016/20977-7 (JFS), 2012/142239 (HMP) also CNPq grant 474402/2013-4 and 140636/2013-7 for the financial support. We also thank the ESRF and beamline scientists that helped us during the data acquisition.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Serrão, V.H.B., Scortecci, J.F., D’Muniz Pereira, H. (2020). Characterization of Schistosoma mansoni Dihydrofolate Reductase (DHFR). In: Timson, D.J. (eds) Schistosoma mansoni. Methods in Molecular Biology, vol 2151. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0635-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0635-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0634-6

  • Online ISBN: 978-1-0716-0635-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics