Skip to main content

In-Cell NMR of Intrinsically Disordered Proteins in Mammalian Cells

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

In-cell NMR enables structural insights at atomic resolution of proteins in their natural environment. To date, very few methods have been developed to study proteins by in-cell NMR in mammalian systems. Here we describe a detailed protocol to conduct in-cell NMR on the intrinsically disordered protein of alpha-Synuclein (αSyn) in mammalian cells. This chapter includes a simplified expression and purification protocol of recombinant αSyn and its delivery into mammalian cells. The chapter also describes how to assess the cell leakage that might occur to the cells, the setup of the instrument, and how to perform basic analyses with the obtained NMR data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Freedberg DI, Selenko P (2014) Live cell NMR. Annu Rev Biophys 43:171–192. https://doi.org/10.1146/annurev-biophys-051013-023136

    Article  CAS  PubMed  Google Scholar 

  2. Luchinat E, Banci L (2017) In-cell NMR: a topical review. IUCrJ 4(Pt 2):108–118. https://doi.org/10.1107/S2052252516020625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luchinat E, Banci L (2016) A unique tool for cellular structural biology: in-cell NMR. J Biol Chem 291(8):3776–3784. https://doi.org/10.1074/jbc.R115.643247

    Article  CAS  PubMed  Google Scholar 

  4. Luchinat E, Barbieri L, Rubino JT, Kozyreva T, Cantini F, Banci L (2014) In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat Commun 5:5502. https://doi.org/10.1038/ncomms6502

    Article  CAS  PubMed  Google Scholar 

  5. Theillet FX, Binolfi A, Bekei B, Martorana A, Rose HM, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, Selenko P (2016) Structural disorder of monomeric alpha-synuclein persists in mammalian cells. Nature 530(7588):45–50. https://doi.org/10.1038/nature16531

    Article  CAS  PubMed  Google Scholar 

  6. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hiroaki H, Shirakawa M (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458(7234):106–109. https://doi.org/10.1038/nature07839

    Article  CAS  PubMed  Google Scholar 

  7. Ogino S, Kubo S, Umemoto R, Huang S, Nishida N, Shimada I (2009) Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J Am Chem Soc 131(31):10834–10835. https://doi.org/10.1021/ja904407w

    Article  CAS  PubMed  Google Scholar 

  8. Binolfi A, Limatola A, Verzini S, Kosten J, Theillet FX, Rose HM, Bekei B, Stuiver M, van Rossum M, Selenko P (2016) Intracellular repair of oxidation-damaged alpha-synuclein fails to target C-terminal modification sites. Nat Commun 7:10251. https://doi.org/10.1038/ncomms10251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kubo S, Nishida N, Udagawa Y, Takarada O, Ogino S, Shimada I (2013) A gel-encapsulated bioreactor system for NMR studies of protein-protein interactions in living mammalian cells. Angew Chem Int Ed Engl 52(4):1208–1211. https://doi.org/10.1002/anie.201207243

    Article  CAS  PubMed  Google Scholar 

  10. Sharaf NG, Barnes CO, Charlton LM, Young GB, Pielak GJ (2010) A bioreactor for in-cell protein NMR. J Magn Reson 202(2):140–146. https://doi.org/10.1016/j.jmr.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  11. Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073. https://doi.org/10.1006/jmbi.2001.4538

    Article  CAS  PubMed  Google Scholar 

  12. Kellie JF, Higgs RE, Ryder JW, Major A, Beach TG, Adler CH, Merchant K, Knierman MD (2014) Quantitative measurement of intact alpha-synuclein proteoforms from post-mortem control and Parkinson’s disease brain tissue by intact protein mass spectrometry. Sci Rep 4:5797. https://doi.org/10.1038/srep05797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartels T, Kim NC, Luth ES, Selkoe DJ (2014) N-alpha-acetylation of alpha-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation. PLoS One 9(7):e103727. https://doi.org/10.1371/journal.pone.0103727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dikiy I, Eliezer D (2014) N-terminal acetylation stabilizes N-terminal helicity in lipid- and micelle-bound alpha-synuclein and increases its affinity for physiological membranes. J Biol Chem 289(6):3652–3665. https://doi.org/10.1074/jbc.M113.512459

    Article  CAS  PubMed  Google Scholar 

  15. Iyer A, Roeters SJ, Schilderink N, Hommersom B, Heeren RM, Woutersen S, Claessens MM, Subramaniam V (2016) The impact of N-terminal acetylation of alpha-synuclein on phospholipid membrane binding and fibril structure. J Biol Chem 291(40):21110–21122. https://doi.org/10.1074/jbc.M116.726612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48. https://doi.org/10.1038/nrn3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prymaczok NC, Riek R, Gerez J (2016) More than a rumor spreads in Parkinson’s disease. Front Hum Neurosci 10:608. https://doi.org/10.3389/fnhum.2016.00608

    Article  PubMed  PubMed Central  Google Scholar 

  18. Giasson BI, Uryu K, Trojanowski JQ, Lee VM (1999) Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 274(12):7619–7622. https://doi.org/10.1074/jbc.274.12.7619

    Article  CAS  PubMed  Google Scholar 

  19. Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274(14):9843–9846. https://doi.org/10.1074/jbc.274.14.9843

    Article  CAS  PubMed  Google Scholar 

  20. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715. https://doi.org/10.1021/bi961799n

    Article  CAS  PubMed  Google Scholar 

  21. Masuda M, Dohmae N, Nonaka T, Oikawa T, Hisanaga S, Goedert M, Hasegawa M (2006) Cysteine misincorporation in bacterially expressed human alpha-synuclein. FEBS Lett 580(7):1775–1779. https://doi.org/10.1016/j.febslet.2006.02.032

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan A. Gerez or Roland Riek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gerez, J.A., Prymaczok, N.C., Riek, R. (2020). In-Cell NMR of Intrinsically Disordered Proteins in Mammalian Cells. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_45

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics