Skip to main content

In Vitro Transition Temperature Measurement of Phase-Separating Proteins by Microscopy

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Intracellular compartmentalization through liquid-liquid phase separation is an emerging organizing principle of cell biology. These compartments, such as the nucleolus and stress granules, are collectively known as membraneless organelles or biomolecular condensates. In vitro studies of many protein components of biomolecular condensates, such as the intrinsically disordered regions of Ddx4, FUS, and Laf-1 proteins, have revealed much about the driving forces of the phase separation process. A common approach is to investigate how the temperature at which a protein solution forms condensates—the transition temperature—responds to changes in the solution composition. We describe a method to measure the in vitro transition temperature of a sub-10 μL sample of a phase-separating solution using transmitted light microscopy. Through monitoring changes in transition temperature with solution conditions, this approach allows the impact of additional biomolecules and additives to be quantitatively assessed and permits the construction of phase diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nott TJ, Petsalaki E, Farber P et al (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57(5):936–947

    Article  CAS  Google Scholar 

  2. Brangwynne CP, Eckmann CR, Courson DS et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732

    Article  CAS  Google Scholar 

  3. Sheu-Gruttadauria J, MacRae IJ (2018) Phase transitions in the assembly and function of human miRISC. Cell 173:946–957.e16

    Article  CAS  Google Scholar 

  4. Schuster BS, Reed EH, Parthasarathy R et al (2018) Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat Commun 9:2985

    Article  Google Scholar 

  5. Li P, Banjade S, Cheng H-C et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–340

    Article  CAS  Google Scholar 

  6. Molliex A, Temirov J, Lee J et al (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133

    Article  CAS  Google Scholar 

  7. Franzmann TM, Jahnel M, Pozniakovsky A et al (2018) Phase separation of a yeast prion protein promotes cellular fitness. Science 359:eaao5654

    Article  Google Scholar 

  8. Banani SF, Lee HO, Hyman AA et al (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298

    Article  CAS  Google Scholar 

  9. Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357:6357

    Article  Google Scholar 

  10. Feric M, Vaidya N, Harmon TS et al (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–1697

    Article  CAS  Google Scholar 

  11. Wegmann S, Eftekharzadeh B, Tepper K et al (2018) Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J 37:e98049

    Article  Google Scholar 

  12. Elbaum-Garfinkle S, Kim Y, Szczepaniak K et al (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci U S A 112(23):7189–7194

    Article  CAS  Google Scholar 

  13. Wang J, Choi J-M, Holehouse AS et al (2018) A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174:688–699.e16

    Article  CAS  Google Scholar 

  14. Simon JR, Carroll NJ, Rubinstein M et al (2017) Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat Chem 9:509–515

    Article  CAS  Google Scholar 

  15. Aumiller WM, Pir Cakmak F, Davis BW et al (2016) RNA-based coacervates as a model for membraneless organelles: formation, properties, and interfacial liposome assembly. Langmuir 32:10042–10053

    Article  CAS  Google Scholar 

  16. Shultz AR, Flory PJ (1952) Phase equilibria in polymer—solvent systems. J Am Chem Soc 74:4760–4767

    Article  CAS  Google Scholar 

  17. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  18. O’Malley R (1983) Physical chemistry, second edition (Atkins, P.W.). J Chem Educ 60:A63

    Article  Google Scholar 

  19. Brangwynne CP, Tompa P, Pappu RV (2015) Polymer physics of intracellular phase transitions. Nat Phys 11:899–904

    Article  CAS  Google Scholar 

  20. Gibaud T, Schurtenberger P (2009) A closer look at arrested spinodal decomposition in protein solutions. J Phys Condens Matter 21:322201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Nott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Holland, J., Crabtree, M.D., Nott, T.J. (2020). In Vitro Transition Temperature Measurement of Phase-Separating Proteins by Microscopy. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics