Skip to main content

Pathway Analysis for Targeted and Untargeted Metabolomics

  • Protocol
  • First Online:
Computational Methods and Data Analysis for Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2104))

Abstract

Recent advances in analytical techniques, particularly LC-MS, generate increasingly large and complex metabolomics datasets. Pathway analysis tools help place the experimental observations into relevant biological or disease context. This chapter provides an overview of the general concepts and common tools for pathway analysis, including Mummichog for untargeted metabolomics. Examples of pathway mapping, MetScape, and Mummichog are explained. This serves as both a practical tutorial and a timely survey of pathway analysis for label-free metabolomics data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roberts LD, Souza AL, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol. Chapter 30:Unit 30.32.31-24. https://doi.org/10.1002/0471142727.mb3002s98

    Article  Google Scholar 

  2. Mahieu NG, Patti GJ (2017) Systems-level annotation of a metabolomics data set reduces 25000 features to fewer than 1000 unique metabolites. Anal Chem 89(19):10397–10406. https://doi.org/10.1021/acs.analchem.7b02380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(database issue):D354–D357

    Article  CAS  PubMed  Google Scholar 

  4. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40(Database issue):D742–D753. https://doi.org/10.1093/nar/gkr1014

    Article  CAS  PubMed  Google Scholar 

  5. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104(6):1777–1782. https://doi.org/10.1073/pnas.0610772104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135. https://doi.org/10.1038/msb4100177

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG, Agren R, Bolling C, Bordel S, Chavali AK, Dobson P, Dunn WB, Endler L, Hala D, Hucka M, Hull D, Jameson D, Jamshidi N, Jonsson JJ, Juty N, Keating S, Nookaew I, Le Novere N, Malys N, Mazein A, Papin JA, Price ND, Selkov E Sr, Sigurdsson MI, Simeonidis E, Sonnenschein N, Smallbone K, Sorokin A, van Beek JH, Weichart D, Goryanin I, Nielsen J, Westerhoff HV, Kell DB, Mendes P, Palsson BO (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419–425. https://doi.org/10.1038/nbt.2488

    Article  CAS  PubMed  Google Scholar 

  8. Sigurdsson MI, Jamshidi N, Steingrimsson E, Thiele I, Palsson BO (2010) A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC Syst Biol 4:140. https://doi.org/10.1186/1752-0509-4-140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hao T, Ma HW, Zhao XM, Goryanin I (2010) Compartmentalization of the Edinburgh human metabolic network. BMC Bioinformatics 11:393. https://doi.org/10.1186/1471-2105-11-393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D, Djoumbou Y, Liu Y, Deng L, Guo AC, Han B, Pon A, Wilson M, Rafatnia S, Liu P, Wishart DS (2014) SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res 42(Database issue):D478–D484. https://doi.org/10.1093/nar/gkt1067

    Article  CAS  PubMed  Google Scholar 

  11. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8(9):R183. https://doi.org/10.1186/gb-2007-8-9-r183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8(2):e1002375. https://doi.org/10.1371/journal.pcbi.1002375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Creixell P, Reimand J, Haider S, Wu G, Shibata T, Vazquez M, Mustonen V, Gonzalez-Perez A, Pearson J, Sander C, Raphael BJ, Marks DS, Ouellette BFF, Valencia A, Bader GD, Boutros PC, Stuart JM, Linding R, Lopez-Bigas N, Stein LD (2015) Pathway and network analysis of cancer genomes. Nat Methods 12(7):615–621. https://doi.org/10.1038/nmeth.3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35(Web Server issue):W169–W175. https://doi.org/10.1093/nar/gkm415

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee PH, O’Dushlaine C, Thomas B, Purcell SM (2012) INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 28(13):1797–1799. https://doi.org/10.1093/bioinformatics/bts191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Segre AV, Groop L, Mootha VK, Daly MJ, Altshuler D (2010) Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 6(8):e1001058. https://doi.org/10.1371/journal.pgen.1001058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cavalcante RG, Lee C, Welch RP, Patil S, Weymouth T, Scott LJ, Sartor MA (2014) Broad-enrich: functional interpretation of large sets of broad genomic regions. Bioinformatics 30(17):i393–i400. https://doi.org/10.1093/bioinformatics/btu444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cavalcante RG, Patil S, Weymouth TE, Bendinskas KG, Karnovsky A, Sartor MA (2016) ConceptMetab: exploring relationships among metabolite sets to identify links among biomedical concepts. Bioinformatics 32(10):1536–1543. https://doi.org/10.1093/bioinformatics/btw016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopez-Ibanez J, Pazos F, Chagoyen M (2016) MBROLE 2.0-functional enrichment of chemical compounds. Nucleic Acids Res 44(W1):W201–W204. https://doi.org/10.1093/nar/gkw253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 55:14.10.11–14.10.91. https://doi.org/10.1002/cpbi.11

    Article  Google Scholar 

  22. Hernandez-de-Diego R, Tarazona S, Martinez-Mira C, Balzano-Nogueira L, Furio-Tari P, Pappas GJ Jr, Conesa A (2018) PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res 46(W1):W503–w509. https://doi.org/10.1093/nar/gky466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paley SM, Karp PD (2006) The pathway tools cellular overview diagram and Omics viewer. Nucleic Acids Res 34(13):3771–3778. https://doi.org/10.1093/nar/gkl334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garcia-Alcalde F, Garcia-Lopez F, Dopazo J, Conesa A (2011) Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 27(1):137–139. https://doi.org/10.1093/bioinformatics/btq594

    Article  CAS  PubMed  Google Scholar 

  25. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109. https://doi.org/10.1186/1471-2105-7-109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klukas C, Schreiber F (2010) Integration of -omics data and networks for biomedical research with VANTED. J Integr Bioinform 7(2):112. https://doi.org/10.2390/biecoll-jib-2010-112

    Article  PubMed  Google Scholar 

  27. Xia J, Wishart DS (2010) MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26(18):2342–2344. https://doi.org/10.1093/bioinformatics/btq418

    Article  CAS  PubMed  Google Scholar 

  28. King ZA, Drager A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO (2015) Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput Biol 11(8):e1004321. https://doi.org/10.1371/journal.pcbi.1004321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karnovsky A, Weymouth T, Hull T, Tarcea VG, Scardoni G, Laudanna C, Sartor MA, Stringer KA, Jagadish HV, Burant C, Athey B, Omenn GS (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28(3):373–380. https://doi.org/10.1093/bioinformatics/btr661

    Article  CAS  PubMed  Google Scholar 

  30. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, Jones DP, Pulendran B (2013) Predicting network activity from high throughput metabolomics. PLoS Comput Biol 9(7):e1003123. https://doi.org/10.1371/journal.pcbi.1003123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huan T, Forsberg EM, Rinehart D, Johnson CH, Ivanisevic J, Benton HP, Fang M, Aisporna A, Hilmers B, Poole FL, Thorgersen MP, Adams MWW, Krantz G, Fields MW, Robbins PD, Niedernhofer LJ, Ideker T, Majumder EL, Wall JD, Rattray NJW, Goodacre R, Lairson LL, Siuzdak G (2017) Systems biology guided by XCMS online metabolomics. Nat Methods 14(5):461–462. https://doi.org/10.1038/nmeth.4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494. https://doi.org/10.1093/nar/gky310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pirhaji L, Milani P, Leidl M, Curran T, Avila-Pacheco J, Clish CB, White FM, Saghatelian A, Fraenkel E (2016) Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat Methods 13(9):770–776. https://doi.org/10.1038/nmeth.3940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barupal DK, Haldiya PK, Wohlgemuth G, Kind T, Kothari SL, Pinkerton KE, Fiehn O (2012) MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinformatics 13:99. https://doi.org/10.1186/1471-2105-13-99

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been funded in part by the US national Institutes of Health via grants U01CA235487 (Karnovsky, Michailidis), U19 AI090023 (Pulendran), U2C ES026560 (Marsit), and U01 CA235493 (Li, Xia, Siuzdak).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karnovsky, A., Li, S. (2020). Pathway Analysis for Targeted and Untargeted Metabolomics. In: Li, S. (eds) Computational Methods and Data Analysis for Metabolomics. Methods in Molecular Biology, vol 2104. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0239-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0239-3_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0238-6

  • Online ISBN: 978-1-0716-0239-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics