Skip to main content

Methods for Identification and Validation of G-Quadruplex Sequences in Legumes

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2107))

  • 1381 Accesses

Abstract

Among the different secondary structures that DNA can adopt, G-quadruplex is a noncanonical form that has recently started to garner attention about the possible layers of regulation they could introduce in cellular processes. Here, we outline how the presence of G-quadruplexes can be probed in legumes and other plant genomes. This chapter describes various in silico approaches that can be utilized to identify putative G-quadruplex forming sequences (GQSes) and validate their formation through in vitro experimental approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415

    Article  CAS  Google Scholar 

  2. Bugaut A, Balasubramanian S (2008) A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 47:689–697

    Article  CAS  Google Scholar 

  3. Biffi G, Tannahill D, Balasubramanian S (2012) An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2. J Am Chem Soc 134:11974–11976

    Article  CAS  Google Scholar 

  4. Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10:261

    Article  CAS  Google Scholar 

  5. Shahid R, Bugaut A, Balasubramanian S (2010) The BCL-2 5′ untranslated region contains an RNA G-quadruplex-forming motif that modulates protein expression. Biochemistry 49:8300–8306

    Article  CAS  Google Scholar 

  6. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99:11593–11598

    Article  CAS  Google Scholar 

  7. Bugaut A, Rodriguez R, Kumari S, Hsu STD, Balasubramanian S (2010) Small molecule-mediated inhibition of translation by targeting a native RNA G-quadruplex. Org Biomol Chem 8:2771–2776

    Article  CAS  Google Scholar 

  8. Kumari S, Bugaut A, Balasubramanian S (2008) Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5′ UTR of the NRAS proto-oncogene. Biochemistry 47:12664–12669

    Article  CAS  Google Scholar 

  9. Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691

    Article  CAS  Google Scholar 

  10. Mullen MA, Olson KJ, Dallaire P, Major F, Assmann SM, Bevilacqua PC (2010) RNA G-Quadruplexes in the model plant species Arabidopsis thaliana: prevalence and possible functional roles. Nucleic Acids Res 38:8149–8163

    Article  CAS  Google Scholar 

  11. Garg R, Aggarwal J, Thakkar B (2016) Genome-wide discovery of G-quadruplex forming sequences and their functional relevance in plants. Sci Rep 6:28211

    Article  CAS  Google Scholar 

  12. Griffin BD, Bass HW (2018) Plant G-quadruplex (G4) motifs in DNA and RNA; abundant, intriguing sequences of unknown function. Plant Sci 269:143–147

    Article  CAS  Google Scholar 

  13. Andorf CM, Kopylov M, Dobbs D, Koch KE, Stroupe ME, Lawrence CJ, Bass HW (2014) G-quadruplex (G4) motifs in the maize (Zea mays L.) genome are enriched at specific locations in thousands of genes coupled to energy status, hypoxia, low sugar, and nutrient deprivation. J Genet Genomics 41:627–647

    Article  Google Scholar 

  14. Kwok CK, Ding Y, Shahid S, Assmann SM, Bevilacqua PC (2015) A stable RNA G-quadruplex within the 5′-UTR of Arabidopsis thaliana ATR mRNA inhibits translation. Biochem J 467:91–102

    Article  CAS  Google Scholar 

  15. Dhapola P, Chowdhury S (2016) QuadBase2: web server for multiplexed guanine quadruplex mining and visualization. Nucleic Acids Res 44:W277–W283

    Article  CAS  Google Scholar 

  16. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908–2916

    Article  CAS  Google Scholar 

  17. Kikin O, D’Antonio L, Bagga PS (2006) QGRS mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 34:W676–W682

    Article  CAS  Google Scholar 

  18. Eddy J, Maizels N (2006) Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 34:3887–3896

    Article  CAS  Google Scholar 

  19. Frees S, Menendez C, Crum M, Bagga PS (2014) QGRS-conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs. Hum Genomics 8:8

    Article  Google Scholar 

  20. Mergny JL, Phan AT, Lacroix L (1998) Following G-quartet formation by UV-spectroscopy. FEBS Lett 435:74–78

    Article  CAS  Google Scholar 

  21. Paramasivan S, Rujan I, Bolton PH (2007) Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods 43:324–331

    Article  CAS  Google Scholar 

  22. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876

    Article  CAS  Google Scholar 

  23. Webba da Silva M (2007) NMR methods for studying quadruplex nucleic acids. Methods 43:264–277

    Article  CAS  Google Scholar 

  24. Brázda V, Kolomazník J, Lýsek J, Bartas M, Fojta M, Šťastný J, Mergny JL (2019) G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 24:1711

    Google Scholar 

  25. Wong HM, Stegle O, Rodgers S, Huppert JL (2010) A toolbox for predicting g-quadruplex formation and stability. J Nucleic Acids 2010:564946. https://doi.org/10.4061/564946

    Article  PubMed  PubMed Central  Google Scholar 

  26. Randazzo A, Spada GP, da Silva MW (2013) Circular dichroism of quadruplex structures. Top Curr Chem 330:67–86

    Article  CAS  Google Scholar 

  27. Hurley LH, Salazar M (1999) A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res 27:537–542

    Article  Google Scholar 

  28. Marsico G, Chambers VS, Sahakyan AB, McCauley P, Boutell JM, Antonio MD, Balasubramanian S (2019) Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res 47:3862–3874

    Article  CAS  Google Scholar 

  29. Sun D, Hurley LH (2010) Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay. Methods Mol Biol 608:65–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SS and KG acknowledge Shiv Nadar University for Research Fellowship and TM acknowledges SNU for funding OUR project. RG acknowledges Shiv Nadar University and Early Career Research Award from the Science and Engineering Research Board, Government of India, for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, S., Mathur, T., Gupta, K., Garg, R. (2020). Methods for Identification and Validation of G-Quadruplex Sequences in Legumes. In: Jain, M., Garg, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 2107. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0235-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0235-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0234-8

  • Online ISBN: 978-1-0716-0235-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics