Skip to main content

Using Bronchoalveolar Lavage to Evaluate Changes in Pulmonary Diseases

  • Protocol
  • First Online:
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2102))

Abstract

Bronchoalveolar lavage (BAL) is a procedure that can be used to collect samples from human and animal lungs to efficiently evaluate the immune response and the potentially pathological changes by examining both the compositions of cells and fluid from lavage. There are observable changes including inflammatory response in human and animal lungs exposed to environmental exposures such as toxic chemicals and microorganisms, or under pathophysiological conditions in respiratory system. The profile of inflammatory cells in BAL provides a qualitative description of inflammatory response, and the secretion in BAL fluid contains secreted proteins of inflammatory mediators and albumin as a quantitative measurement of inflammation and tissue injury in the lungs. Mouse is the most common model system being used for pulmonary disease-related research. A consistent experimental approach on how to lavage mouse lungs and collect samples from mouse lungs is important for a reproducible evaluation of pathological and physiological changes in mouse lung especially for the analysis of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Henderson AJ (1994) Bronchoalveolar lavage. Arch Dis Child 70:167–169

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rose AS, Knox KS (2007) Bronchoalveolar lavage as a research tool. Semin Respir Crit Care Med 28:561–573

    PubMed  Google Scholar 

  3. Martin WR, Padrid PA, Cross CE (1990) Bronchoalveolar lavage. Clin Rev Allergy 8:305–332

    CAS  PubMed  Google Scholar 

  4. Meyer KC, Raghu G, Baughman RP, Brown KK, Costabel U, du Bois RM, Drent M, Haslam PL, Kim DS, Nagai S, Rottoli P, Saltini C, Selman M, Strange C, Wood B, American Thoracic Society Committee on, B. A. L. i. I. L. D (2012) An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med 185:1004–1014

    PubMed  Google Scholar 

  5. Baughman RP (2007) Technical aspects of bronchoalveolar lavage: recommendations for a standard procedure. Semin Respir Crit Care Med 28:475–485

    PubMed  Google Scholar 

  6. Tinkle SS, Schwitters PW, Newman LS (1996) Cytokine production by bronchoalveolar lavage cells in chronic beryllium disease. Environ Health Perspect 104(Suppl 5):969–971

    PubMed  PubMed Central  Google Scholar 

  7. Crohns M, Saarelainen S, Laine S, Poussa T, Alho H, Kellokumpu-Lehtinen P (2010) Cytokines in bronchoalveolar lavage fluid and serum of lung cancer patients during radiotherapy—association of interleukin-8 and VEGF with survival. Cytokine 50:30–36

    CAS  PubMed  Google Scholar 

  8. Van Hoecke L, Job ER, Saelens X, Roose K (2017) Bronchoalveolar lavage of murine lungs to analyze inflammatory cell infiltration. J Vis Exp. https://doi.org/10.3791/55398

  9. Irvin C, Zafar I, Good J, Rollins D, Christianson C, Gorska MM, Martin RJ, Alam R (2014) Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma. J Allergy Clin Immunol 134(1175–1186):e1177

    Google Scholar 

  10. Korevaar DA, Westerhof GA, Wang J, Cohen JF, Spijker R, Sterk PJ, Bel EH, Bossuyt PM (2015) Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. Lancet Respir Med 3:290–300

    PubMed  Google Scholar 

  11. Barczyk A, Pierzchala W, Caramori G, Wiaderkiewicz R, Kaminski M, Barnes PJ, Adcock IM (2014) Decreased percentage of CD4(+)Foxp3(+)TGF-beta(+) and increased percentage of CD4(+)IL-17(+) cells in bronchoalveolar lavage of asthmatics. J Inflamm 11:22

    Google Scholar 

  12. Guerra S, Vasquez MM, Spangenberg A, Halonen M, Martin RJ (2016) Club cell secretory protein in serum and bronchoalveolar lavage of patients with asthma. J Allergy Clin Immunol 138(932–934):e931

    Google Scholar 

  13. Affolter K, Tamm M, Jahn K, Halter J, Passweg J, Hirsch HH, Stolz D (2014) Galactomannan in bronchoalveolar lavage for diagnosing invasive fungal disease. Am J Respir Crit Care Med 190:309–317

    CAS  PubMed  Google Scholar 

  14. Chong GL, van de Sande WW, Dingemans GJ, Gaajetaan GR, Vonk AG, Hayette MP, van Tegelen DW, Simons GF, Rijnders BJ (2015) Validation of a new Aspergillus real-time PCR assay for direct detection of Aspergillus and azole resistance of Aspergillus fumigatus on bronchoalveolar lavage fluid. J Clin Microbiol 53:868–874

    PubMed  PubMed Central  Google Scholar 

  15. Mutschlechner W, Risslegger B, Willinger B, Hoenigl M, Bucher B, Eschertzhuber S, Lass-Florl C (2015) Bronchoalveolar lavage fluid (1,3)beta-D-Glucan for the diagnosis of invasive fungal infections in solid organ transplantation: a prospective multicenter study. Transplantation 99:e140–e144

    CAS  PubMed  Google Scholar 

  16. Babu PB, Chidekel A, Shaffer TH (2004) Association of interleukin-8 with inflammatory and innate immune components in bronchoalveolar lavage of children with chronic respiratory diseases. Clin Chim Acta 350:195–200

    CAS  PubMed  Google Scholar 

  17. Hodge G, Hodge S, Reynolds PN, Holmes M (2008) Airway infection in stable lung transplant patients is associated with decreased intracellular T-helper type 1 pro-inflammatory cytokines in bronchoalveolar lavage T-cell subsets. Transpl Infect Dis 10:99–105

    CAS  PubMed  Google Scholar 

  18. Kahn FW, Jones JM (1987) Diagnosing bacterial respiratory infection by bronchoalveolar lavage. J Infect Dis 155:862–869

    CAS  PubMed  Google Scholar 

  19. Campbell AJ, Noble DW (2007) Bronchoalveolar lavage in the diagnosis of ventilator-associated pneumonia. Anaesthesia 62:1078

    CAS  PubMed  Google Scholar 

  20. Nakos G, Tsangaris H, Liokatis S, Kitsiouli E, Lekka ME (2003) Ventilator-associated pneumonia and atelectasis: evaluation through bronchoalveolar lavage fluid analysis. Intensive Care Med 29:555–563

    CAS  PubMed  Google Scholar 

  21. Samanta S, Poddar B, Azim A, Singh RK, Gurjar M, Baronia AK (2018) Significance of mini bronchoalveolar lavage fluid amylase level in ventilator-associated pneumonia: a prospective observational study. Crit Care Med 46:71–78

    CAS  PubMed  Google Scholar 

  22. Royer S, Prescott HC (2018) Next steps for confirming bronchoalveolar lavage amlyase as an useful biomarker for ventilator-associated pneumonia. Crit Care Med 46:165–166

    PubMed  PubMed Central  Google Scholar 

  23. Kalanuria AA, Ziai W, Mirski M (2014) Ventilator-associated pneumonia in the ICU. Crit Care 18:208

    PubMed  PubMed Central  Google Scholar 

  24. van Maarsseveen TC, Stam J, Calame JJ (1990) T lymphocytosis in a bronchoalveolar lavage of a pulmonary adenocarcinoma: case report. Respiration 57:57–61

    PubMed  Google Scholar 

  25. de Gracia J, Bravo C, Miravitlles M, Tallada N, Orriols R, Bellmunt J, Vendrell M, Morell F (1993) Diagnostic value of bronchoalveolar lavage in peripheral lung cancer. Am Rev Respir Dis 147:649–652

    PubMed  Google Scholar 

  26. Domagala-Kulawik J, Guzman J, Costabel U (2003) Immune cells in bronchoalveolar lavage in peripheral lung cancer--analysis of 140 cases. Respiration 70:43–48

    PubMed  Google Scholar 

  27. Oshita F, Nomura I, Yamada K, Kato Y, Tanaka G, Noda K (1999) Detection of K-ras mutations of bronchoalveolar lavage fluid cells aids the diagnosis of lung cancer in small pulmonary lesions. Clin Cancer Res 5:617–620

    CAS  PubMed  Google Scholar 

  28. Semenzato G, Spatafora M, Feruglio C, Pace E, Dipietro V (1990) Bronchoalveolar lavage and the immunology of lung cancer. Lung 168(Suppl):1041–1049

    PubMed  Google Scholar 

  29. Chellapandian D, Lehrnbecher T, Phillips B, Fisher BT, Zaoutis TE, Steinbach WJ, Beyene J, Sung L (2015) Bronchoalveolar lavage and lung biopsy in patients with cancer and hematopoietic stem-cell transplantation recipients: a systematic review and meta-analysis. J Clin Oncol Off J Am Soc Clin Oncol 33:501–509

    Google Scholar 

  30. Chen Z, Xu Z, Sun S, Yu Y, Lv D, Cao C, Deng Z (2014) TGF-beta1, IL-6, and TNF-alpha in bronchoalveolar lavage fluid: useful markers for lung cancer? Sci Rep 4:5595

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Verleden SE, Ruttens D, Vandermeulen E, van Raemdonck DE, Vanaudenaerde BM, Verleden GM, Vos R (2014) Elevated bronchoalveolar lavage eosinophilia correlates with poor outcome after lung transplantation. Transplantation 97:83–89

    PubMed  Google Scholar 

  32. Speck NE, Schuurmans MM, Benden C, Robinson CA, Huber LC (2017) Plasma and bronchoalveolar lavage samples in acute lung allograft rejection: the potential role of cytokines as diagnostic markers. Respir Res 18:151

    PubMed  PubMed Central  Google Scholar 

  33. Husain S, Resende MR, Rajwans N, Zamel R, Pilewski JM, Crespo MM, Singer LG, McCurry KR, Kolls JK, Keshavjee S, Liles WC (2014) Elevated CXCL10 (IP-10) in bronchoalveolar lavage fluid is associated with acute cellular rejection after human lung transplantation. Transplantation 97:90–97

    CAS  PubMed  Google Scholar 

  34. Low RB (1989) Bronchoalveolar lavage lipids in idiopathic pulmonary fibrosis. Chest 95:3–5

    CAS  PubMed  Google Scholar 

  35. Ohshimo S, Bonella F, Cui A, Beume M, Kohno N, Guzman J, Costabel U (2009) Significance of bronchoalveolar lavage for the diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:1043–1047

    PubMed  Google Scholar 

  36. Pesci A, Ricchiuti E, Ruggiero R, De Micheli A (2010) Bronchoalveolar lavage in idiopathic pulmonary fibrosis: what does it tell us? Respir Med 104(Suppl 1):S70–S73

    PubMed  Google Scholar 

  37. Shinoda H, Tasaka S, Fujishima S, Yamasawa W, Miyamoto K, Nakano Y, Kamata H, Hasegawa N, Ishizaka A (2009) Elevated CC chemokine level in bronchoalveolar lavage fluid is predictive of a poor outcome of idiopathic pulmonary fibrosis. Respiration 78:285–292

    CAS  PubMed  Google Scholar 

  38. Weinberger SE, Kelman JA, Elson NA, Young RC Jr, Reynolds HY, Fulmer JD, Crystal RG (1978) Bronchoalveolar lavage in interstitial lung disease. Ann Intern Med 89:459–466

    CAS  PubMed  Google Scholar 

  39. Daubeuf F, Frossard N (2012) Performing bronchoalveolar lavage in the mouse. Curr Protoc Mouse Biol 2:167–175

    PubMed  Google Scholar 

  40. Abe K, Kadota J, Ishimatsu Y, Iwashita T, Tomono K, Kawakami K, Kohno S (2000) Th1-Th2 cytokine kinetics in the bronchoalveolar lavage fluid of mice infected with Cryptococcus neoformans of different virulences. Microbiol Immunol 44:849–855

    CAS  PubMed  Google Scholar 

  41. Kayes SG, Jones RE, Omholt PE (1987) Use of bronchoalveolar lavage to compare local pulmonary immunity with the systemic immune response of Toxocara canis-infected mice. Infect Immun 55:2132–2136

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lukinskiene L, Liu Y, Reynolds SD, Steele C, Stripp BR, Leikauf GD, Kolls JK, Di YP (2011) Antimicrobial activity of PLUNC protects against pseudomonas aeruginosa Infection. J Immunol 187:382–390

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jahnz-Rozyk KM, Kuna P, Pirozynska E (1997) Monocyte chemotactic and activating factor/monocyte chemoattractant protein (MCAF/MCP-1) in bronchoalveolar lavage fluid from patients with atopic asthma and chronic bronchitis. J Investig Allergol Clin Immunol 7:254–259

    CAS  PubMed  Google Scholar 

  44. Zhang L, Wang M, Kang X, Boontheung P, Li N, Nel AE, Loo JA (2009) Oxidative stress and asthma: proteome analysis of chitinase-like proteins and FIZZ1 in lung tissue and bronchoalveolar lavage fluid. J Proteome Res 8:1631–1638

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hasegawa S, Wakiguchi H, Okada S, Gui Kang Y, Fujii N, Hasegawa M, Hasegawa H, Ainai A, Atsuta R, Shirabe K, Toda S, Wakabayashi-Takahara M, Morishima T, Ichiyama T (2014) Cytokine profile of bronchoalveolar lavage fluid from a mouse model of bronchial asthma during seasonal H1N1 infection. Cytokine 69:206–210

    CAS  PubMed  Google Scholar 

  46. Chang CC, Chen SH, Ho SH, Yang CY, Wang HD, Tsai ML (2007) Proteomic analysis of proteins from bronchoalveolar lavage fluid reveals the action mechanism of ultrafine carbon black-induced lung injury in mice. Proteomics 7:4388–4397

    CAS  PubMed  Google Scholar 

  47. Duniho SM, Martin J, Forster JS, Cascio MB, Moran TS, Carpin LB, Sciuto AM (2002) Acute changes in lung histopathology and bronchoalveolar lavage parameters in mice exposed to the choking agent gas phosgene. Toxicol Pathol 30:339–349

    CAS  PubMed  Google Scholar 

  48. Henderson RF, Benson JM, Hahn FF, Hobbs CH, Jones RK, Mauderly JL, McClellan RO, Pickrell JA (1985) New approaches for the evaluation of pulmonary toxicity: bronchoalveolar lavage fluid analysis. Fundam Appl Toxicol 5:451–458

    CAS  PubMed  Google Scholar 

  49. Vergadi E, Vaporidi K, Theodorakis EE, Doxaki C, Lagoudaki E, Ieronymaki E, Alexaki VI, Helms M, Kondili E, Soennichsen B, Stathopoulos EN, Margioris AN, Georgopoulos D, Tsatsanis C (2014) Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. J Immunol 192:394–406

    CAS  PubMed  Google Scholar 

  50. Micale RT, D'Agostini F, Steele VE, La Maestra S, De Flora S (2008) Budesonide and phenethyl isothiocyanate attenuate DNA damage in bronchoalveolar lavage cells of mice exposed to environmental cigarette smoke. Curr Cancer Drug Targets 8:703–708

    CAS  PubMed  Google Scholar 

  51. Pounds JG, Flora JW, Adkins JN, Lee KM, Rana GS, Sengupta T, Smith RD, McKinney WJ (2008) Characterization of the mouse bronchoalveolar lavage proteome by micro-capillary LC-FTICR mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 864:95–101

    CAS  PubMed  Google Scholar 

  52. Conickx G, Avila Cobos F, van den Berge M, Faiz A, Timens W, Hiemstra PS, Joos GF, Brusselle GG, Mestdagh P, Bracke KR (2017) microRNA profiling in lung tissue and bronchoalveolar lavage of cigarette smoke-exposed mice and in COPD patients: a translational approach. Sci Rep 7:12871

    PubMed  PubMed Central  Google Scholar 

  53. Guoping C, Fan P, Jingxi S, Xiaoping L, Shiqin J, Yuri L (1997) Purification and characterization of a silica-induced bronchoalveolar lavage protein with fibroblast growth-promoting activity. J Cell Biochem 67:257–264

    CAS  PubMed  Google Scholar 

  54. Maeda A, Ishioka S, Taooka Y, Hiyama K, Yamakido M (1999) Expression of transforming growth factor-beta1 and tumour necrosis factor-alpha in bronchoalveolar lavage cells in murine pulmonary fibrosis after intraperitoneal administration of bleomycin. Respirology 4:359–363

    CAS  PubMed  Google Scholar 

  55. Kitagawa M, Kuwashima Y, Nemoto T, Seki S, Matsubara O, Kasuga T (1990) In vivo dynamics of pulmonary lymphoid cell subpopulations generated against pulmonary metastasis: evaluation by bronchoalveolar lavage fluid. Virchows Arch B Cell Pathol Incl Mol Pathol 58:365–370

    CAS  PubMed  Google Scholar 

  56. Janick-Buckner D, Ranges GE, Hacker MP (1989) Alteration of bronchoalveolar lavage cell populations following bleomycin treatment in mice. Toxicol Appl Pharmacol 100:465–473

    CAS  PubMed  Google Scholar 

  57. Harada C, Kawaguchi T, Ogata-Suetsugu S, Yamada M, Hamada N, Maeyama T, Souzaki R, Tajiri T, Taguchi T, Kuwano K, Nakanishi Y (2011) EGFR tyrosine kinase inhibition worsens acute lung injury in mice with repairing airway epithelium. Am J Respir Crit Care Med 183:743–751

    CAS  PubMed  Google Scholar 

  58. Moghaddam SJ, Barta P, Mirabolfathinejad SG, Ammar-Aouchiche Z, Garza NT, Vo TT, Newman RA, Aggarwal BB, Evans CM, Tuvim MJ, Lotan R, Dickey BF (2009) Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Carcinogenesis 30:1949–1956

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, Martinez FJ, Huffnagle GB (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One 6:e16384

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, Jablonski K, Kleerup E, Lynch SV, Sodergren E, Twigg H, Young VB, Bassis CM, Venkataraman A, Schmidt TM, Weinstock GM, Lung HIV M. P (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187:1067–1075

    PubMed  PubMed Central  Google Scholar 

  61. Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, Li Y, Shen N, Ghedin E, Morris A, Diaz P, Huang L, Wikoff WR, Ubeda C, Artacho A, Rom WN, Sterman DH, Collman RG, Blaser MJ, Weiden MD (2016) Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 1:16031

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mould KJ, Jackson ND, Henson PM, Seibold M, Janssen WJ (2019) Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI Insight 4:126556

    PubMed  Google Scholar 

  63. Fischer N, Indenbirken D, Meyer T, Lutgehetmann M, Lellek H, Spohn M, Aepfelbacher M, Alawi M, Grundhoff A (2015) Evaluation of unbiased next-generation sequencing of RNA (RNA-seq) as a diagnostic method in influenza virus-positive respiratory samples. J Clin Microbiol 53:2238–2250

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Peter Di .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Di, M.E., Yang, D., Di, Y.P. (2020). Using Bronchoalveolar Lavage to Evaluate Changes in Pulmonary Diseases. In: Keohavong, P., Singh, K., Gao, W. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 2102. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0223-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0223-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0222-5

  • Online ISBN: 978-1-0716-0223-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics