Skip to main content

Processing TIRF Microscopy Images to Characterize the Dynamics and Morphology of Bacterial Actin-Like Assemblies

  • Protocol
  • First Online:
Cytoskeleton Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

Total internal reflection fluorescence (TIRF) microscopy allows the visualization of the dynamic membrane-associated actin-like MreB filaments in live bacterial cells with high temporal resolution. This chapter describes computerized analysis methods to quantitatively characterize the dynamics and morphological properties of MreB assemblies. These include how to (1) segment bacterial cells, (2) perform single-particle tracking (SPT) of MreB filamentous structures, (3) classify their dynamic modes using mean squared displacement (MSD) analysis, and (4) measure their dimensions and orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jones LJ, Carballido-López R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104(6):913–922

    Article  CAS  Google Scholar 

  2. van den Ent F, Amos LA, Löwe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413(6851):39–44

    Article  Google Scholar 

  3. Billaudeau C, Chastanet A, Yao Z, Cornilleau C, Mirouze N, Fromion V, Carballido-Lopez R (2017) Contrasting mechanisms of growth in two model rod-shaped bacteria. Nat Commun 8:15370. https://doi.org/10.1038/ncomms15370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dominguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Soldner R, Carballido-Lopez R (2011) Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333(6039):225–228. https://doi.org/10.1126/science.1203466

    Article  CAS  PubMed  Google Scholar 

  5. Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333(6039):222–225

    Article  CAS  Google Scholar 

  6. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268. https://doi.org/10.1146/annurev.bb.13.060184.001335

    Article  CAS  PubMed  Google Scholar 

  7. Fish KN (2009) Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom Chapter 12:Unit12.18. https://doi.org/10.1002/0471142956.cy1218s50

  8. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5(8):695–702. https://doi.org/10.1038/nmeth.1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90. https://doi.org/10.1016/j.ymeth.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  10. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  11. Applegate KT, Besson S, Matov A, Bagonis MH, Jaqaman K, Danuser G (2011) plusTipTracker: quantitative image analysis software for the measurement of microtubule dynamics. J Struct Biol 176(2):168–184. https://doi.org/10.1016/j.jsb.2011.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ducret A, Quardokus EM, Brun YV (2016) MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat Microbiol 1(7):16077. https://doi.org/10.1038/nmicrobiol.2016.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I, Jacobs-Wagner C (2016) Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol Microbiol 99(4):767–777. https://doi.org/10.1111/mmi.13264

    Article  CAS  PubMed  Google Scholar 

  14. Stylianidou S, Brennan C, Nissen SB, Kuwada NJ, Wiggins PA (2016) SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells. Mol Microbiol 102(4):690–700. https://doi.org/10.1111/mmi.13486

    Article  CAS  PubMed  Google Scholar 

  15. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2):155–157. https://doi.org/10.1038/nmeth.1176

    Article  CAS  PubMed  Google Scholar 

  16. Billaudeau C, Yao Z, Cornilleau C, Carballido-Lopez R, Chastanet A (2019) MreB forms subdiffraction nanofilaments during active growth in Bacillus subtilis. MBio 10(1):e01879-18. https://doi.org/10.1128/mBio.01879-18

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by a consolidator grant from the European Research Council (ERC COG) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 772178) to R.C.-L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rut Carballido-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Billaudeau, C., Chastanet, A., Carballido-López, R. (2020). Processing TIRF Microscopy Images to Characterize the Dynamics and Morphology of Bacterial Actin-Like Assemblies. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics