Skip to main content

Efficient Optimization of Process Strategies with Model-Assisted Design of Experiments

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2095))

Abstract

Conventional design of experiments (DoE) methods require expert knowledge about the investigated factors and their boundary values and mostly lead to multiple rounds of time-consuming and costly experiments. The combination of DoE with mathematical process modeling in model-assisted DoE (mDoE) can be used to increase the mechanistic understanding of the process. Furthermore, it is aimed to optimize the processes with respect to a target (e.g., amount of cells, product titer), which also provides new insights into the process. In this chapter, the workflow of mDoE is explained stepwise including corresponding protocols. Firstly, a mathematical process model is adapted to cultivation data of first experimental data or existing knowledge. Secondly, model-assisted simulations are treated in the same way as experimentally derived data and included as responses in statistical DoEs. The DoEs are then evaluated based on the simulated data, and a constrained-based optimization of the experimental space can be conducted. This loop can be repeated several times and significantly reduces the number of experiments in process development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Möller J, Pörtner R (2017) Model-based design of process strategies for cell culture bioprocesses: state of the art and new perspectives. In: Gowder S (ed) New insights in cell culture technology. InTech, London. ISBN: 978-953-51-3133-5

    Google Scholar 

  2. Sandadi S, Ensari S, Kearns B (2006) Application of fractional factorial designs to screen active factors for antibody production by Chinese hamster ovary cells. Biotechnol Prog 22:595–600. https://doi.org/10.1021/bp050300q

    Article  CAS  PubMed  Google Scholar 

  3. Kleppmann W (2013) Versuchsplanung. Produkte und Prozesse optimieren, 8th edn. Hanser, München, Wien. ISBN: 978-3446437524

    Book  Google Scholar 

  4. Zhang H, Wang H, Liu M, Zhang T, Zhang J, Wang X, Xiang W (2013) Rational development of a serum-free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody. Cytotechnology 65:363–378. https://doi.org/10.1007/s10616-012-9488-4

    Article  CAS  PubMed  Google Scholar 

  5. Nasri NMR, Razavi SH (2010) Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxan-thin from Dietzia natronolimnaea HS-1. J Biosci Bioeng 109:361–368. https://doi.org/10.1016/j.jbiosc.2009.10.013

    Article  CAS  Google Scholar 

  6. Siebertz K, Bebber DV, Hochkirchen T (2010) Statistische Versuchsplanung. In: Design of Experiments (DoE). Springer, Heidelberg, ISBN: 978-3-642-05493-8

    Google Scholar 

  7. Mandenius C, Graumann K, Schultz T, Premstaller A, Olsson M, Petiot E, Clemens C, Welin M (2009) Quality-by-design for biotechnology-related pharmaceuticals. Biotechnol J 4:600–609. https://doi.org/10.1002/biot.200800333

    Article  CAS  PubMed  Google Scholar 

  8. Möller J, Kuchemüller KB, Hernández Rodríguez T, Frahm B, Hass VC, Pörtner R (2018) Model-assisted design of process strategies for cell culture processes. Am Pharm Rev 21(3):39–41

    Google Scholar 

  9. Möller J, Kuchemüller K, Pörtner R (2018) Model-assisted DoE – A concept study for cell culture process development. Chemie Ingenieur Technik 90(9):1235–1235. https://doi.org/10.1002/cite.201855228

    Article  CAS  Google Scholar 

  10. Abt V, Barz T, Cruz N, Herwig C, Kroll P, Möller J, Pörtner R, Schenkendorf R (2018) Model-based tools for optimal experiments in bioprocess engineering. Curr Opin Chem Eng 22:244–252. https://doi.org/10.1016/j.coche.2018.11.007

    Article  Google Scholar 

  11. Möller J, Kuchemüller KB, Steinmetz T, Koopmann KS, Pörtner R (2019) Model-assisted design of experiments as a concept for knowledge-based bioprocess development. Bioprocess Biosyst Eng 42(5):867–882. https://doi.org/10.1007/s00449-019-02089-7

    Article  CAS  PubMed  Google Scholar 

  12. Kern S, Platas-Barradas O, Pörtner R, Frahm B (2014) Model-based strategy for cell culture seed train layout verified at lab scale. Cytotechnology 68(4):1019–1032. https://doi.org/10.1007/s10616-015-9858-9

    Article  Google Scholar 

  13. Frahm B, Lane P, Märkl H, Pörtner R (2003) Improvement of a mammalian cell culture process by adaptive, model-based dialysis fed-batch cultivation and suppression of apoptosis. Bioprocess Biosyst Eng 26:1–10. https://doi.org/10.1007/s00449-003-0335-z

    Article  CAS  PubMed  Google Scholar 

  14. Mohler L, Bock A, Reichl U (2008) Segregated mathematical model for growth of anchorage-dependent MDCK cells in microcarrier culture. Biotechnol Prog 24:110–119. https://doi.org/10.1021/bp0701923

    Google Scholar 

  15. Ling WLW, Bai Y, Cheng C, Padawer I, Wu C (2015) Development and manufacturability assessment of chemically-defined medium for the production of protein therapeutics in CHO cells. Biotechnol Prog 31:1163–1171. https://doi.org/10.1002/btpr.2108

    Article  CAS  PubMed  Google Scholar 

  16. Liu C, Chang T (2006) Rational development of serum-free medium for Chinese hamster ovary cells. Process Biochem 41:2314–2319. https://doi.org/10.1016/j.procbio.2006.06.008

    Article  CAS  Google Scholar 

  17. Torkashvand F, Vaziri B, Maleknia S, Heydari A, Vossoughi M, Davami F, Mahboudi F (2015) Designed amino acid feed in improvement of production and quality targets of a therapeutic monoclonal antibody. PLoS One 10:e0140597. https://doi.org/10.1371/journal.pone.0140597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castro PML, Hayter PM, Ison AP, Bull AT (1992) Application of a statistical design to the optimization of culture medium for recombinant interferon-gamma production by Chinese hamster ovary cells. Appl Microbiol Biotechnol 38(1):84–90. https://doi.org/10.1007/BF00169424

    Article  CAS  PubMed  Google Scholar 

  19. Chun C, Heineken K, Szeto D, Ryll T, Chamow S, Chung JD (2003) Application of factorial design to accelerate identification of CHO growth factor requirements of CHO growth factor requirements. Biotechnol Prog 19:52–57. https://doi.org/10.1021/bp025575

    Article  CAS  PubMed  Google Scholar 

  20. Liu C, Chu I, Hwang S (2001) Factorial designs combined with the steepest ascent method to optimize serum-free media for CHO cells. Enzym Microb Technol 28:314–321. https://doi.org/10.1016/S0141-0229(00)00346-X

    Article  CAS  Google Scholar 

  21. Alt W (2011) Nichtlineare Optimierung, Eine Einführung in Theorie, Verfahren und Anwendungen, 2nd edn. Vieweg+Teubner Verlag, Wiesbaden. ISBN: 978-3-8348-1558-3

    Google Scholar 

  22. Frahm B, Lane P, Atzert H, Munack A, Hoffmann M, Hass VC, Pörtner R (2002) Adaptive, Model-Based Control by the Open-Loop-Feedback-Optimal (OLFO) controller for the effective fed-batch cultivation of hybridoma cells. Biotechnol Prog 18:1095–1103. https://doi.org/10.1021/bp020035y

    Article  CAS  PubMed  Google Scholar 

  23. Cameron A, Windmeijer F (1997) An R-squared measure of goodness of fit for some common nonlinear regression models. J Econ 77:329–342. https://doi.org/10.1016/S0304-4076(96)01818-0

    Article  Google Scholar 

  24. McHugh MJ (2005) Multi-model trends in East African rainfall associated with increased CO2. Geophys Res Lett 32:2068. https://doi.org/10.1029/2004GL021632

    Article  CAS  Google Scholar 

  25. Deppe S, Kuchemüller KB, Hernández Rodríguez T, Pörtner R, Möller J, Frahm B (2019) Estimation of process model parameters. In: Pörtner R (ed) Methods in molecular biology – animal cell biotechnology, 4th edn. Springer, New York

    Google Scholar 

  26. Mandenius CF, Brundin A (2008) Bioprocess optimization using design-of-experiments methodology. Biotechnol Prog 24:1191–1203. https://doi.org/10.1002/btpr.67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Möller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuchemüller, K.B., Pörtner, R., Möller, J. (2020). Efficient Optimization of Process Strategies with Model-Assisted Design of Experiments. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 2095. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0191-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0191-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0190-7

  • Online ISBN: 978-1-0716-0191-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics