Skip to main content

Inferring Metabolic Flux from Time-Course Metabolomics

  • Protocol
  • First Online:
Metabolic Flux Analysis in Eukaryotic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2088))

Abstract

The metabolic activity of a mammalian cell changes dynamically over time and is tied to the changing metabolic demands of cellular processes such as cell differentiation and proliferation. While experimental tools like time-course metabolomics and flux tracing can measure the dynamics of a few pathways, they are unable to infer fluxes at the whole network level. To address this limitation, we have developed the Dynamic Flux Activity (DFA) algorithm, a genome-scale modeling approach that uses time-course metabolomics to predict dynamic flux rewiring during transitions between metabolic states. This chapter provides a protocol for applying DFA to characterize the dynamic metabolic activity of various cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luengo A, Gui DY, Vander Heiden MG (2017) Targeting metabolism for cancer therapy. Cell Chem Biol 24(9):1161–1180. https://doi.org/10.1016/j.chembiol.2017.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saa PA, Nielsen LK (2017) Formulation, construction and analysis of kinetic models of metabolism: a review of modelling frameworks. Biotechnol Adv 35(8):981–1003. https://doi.org/10.1016/J.BIOTECHADV.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  3. Nilsson A, Nielsen J, Palsson BO (2017) Commentary metabolic models of protein allocation call for the kinetome. Cell Syst 5:538–541. https://doi.org/10.1016/j.cels.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  4. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248. https://doi.org/10.1038/nbt.1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161(5):971–987. https://doi.org/10.1016/j.cell.2015.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uhlén M, Hallström BM, Lindskog C, Mardinoglu A, Pontén F, Nielsen J (2016) Transcriptomics resources of human tissues and organs. Mol Syst Biol 12(4):862. https://doi.org/10.15252/msb.20155865

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chandrasekaran S, Zhang J, Sun Z, Zhang L, Ross CA, Huang Y-C et al (2017) Comprehensive mapping of pluripotent stem cell metabolism using dynamic genome-scale network modeling. Cell Rep 21(10):2965–2977. https://doi.org/10.1016/J.CELREP.2017.07.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson ÓE, Palsson BO (2017) Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci Rep 7:46249

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A et al (2017) Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. http://arxiv.org/abs/1710.04038

  10. Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, Palsson BO (2017) Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci Rep 7:41241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO (2015) Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput Biol 11(8):e1004321. https://doi.org/10.1371/journal.pcbi.1004321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL et al (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336(6084):1040–1044. https://doi.org/10.1126/science.1218595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yizhak K, Gaude E, Le Dévédec S, Waldman YY, Stein GY, van de Water B et al (2014) Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. Elife 3. https://doi.org/10.7554/eLife.03641

  14. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD et al (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6:390. https://doi.org/10.1038/msb.2010.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494. https://doi.org/10.1093/nar/gky310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen F, Boccuto L, Pauly R, Srikanth S, Chandrasekaran S (2019) Genome-scale network model of metabolism and histone acetylation reveals metabolic dependencies of histone deacetylase inhibitors. Genome Biol 20(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107(41):17845–17850. https://doi.org/10.1073/pnas.1005139107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Chandrasekaran .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Campit, S., Chandrasekaran, S. (2020). Inferring Metabolic Flux from Time-Course Metabolomics. In: Nagrath, D. (eds) Metabolic Flux Analysis in Eukaryotic Cells. Methods in Molecular Biology, vol 2088. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0159-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0159-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0158-7

  • Online ISBN: 978-1-0716-0159-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics