Skip to main content

Comparative Metabolic Network Flux Analysis to Identify Differences in Cellular Metabolism

  • Protocol
  • First Online:
Metabolic Flux Analysis in Eukaryotic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2088))

Abstract

Metabolic network flux analysis uses genome-scale metabolic reconstructions to integrate transcriptomics, proteomics, and/or metabolomics data to allow for comprehensive interpretation of genotype to metabolic phenotype relationships. The compilation of many Constraint-based model analysis methods into one MATLAB package, the COBRAtoolbox, has opened the possibility of using these methods to the many biologists with some knowledge of the commonly used statistical program, MATLAB. Here we outline the steps required to take a published genome-scale metabolic reconstruction and interrogate its consistency and biological feasibility. Subsequently, we demonstrate how mRNA expression data and metabolomics data, relating to one or more cell types or biological contexts, can be applied to constrain and generate metabolic models descriptive of metabolic flux phenotypes. Finally, we describe the comparison of the resulting models and model outputs with the aim of identifying metabolic biomarkers and changes in cellular metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Resendis-Antonio O (2013) Constraint-based modeling. In: Encyclopedia of systems biology. Springer, New York, NY, pp 494–498

    Chapter  Google Scholar 

  2. Thiele I, Palsson B (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Becker S, Feist A, Mo M et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  CAS  PubMed  Google Scholar 

  4. Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10:e1003580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4:e1000082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Orth J, Thiele I, Palsson B (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Opdam S, Richelle A, Kellman B et al (2017) A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Syst 4:318–329.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Eddy JA, Price ND (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 6:153

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vlassis NN, Pacheco MPM, Sauter TTT et al (2014) Fast reconstruction of compact context-specific metabolic network models. PLoS Comput Biol 10:e1003424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schultz A, Qutub AA (2016) Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput Biol 12:e1004808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Aurich MK, Fleming RMT, Thiele I (2016) MetaboTools: a comprehensive toolbox for analysis of genome-scale metabolic models. Front Physiol 7:327

    Article  PubMed  PubMed Central  Google Scholar 

  12. García Martín H, Kumar VS, Weaver D et al (2015) A method to constrain genome-scale models with 13C labeling data. PLoS Comput Biol 11:e1004363

    Article  PubMed Central  CAS  Google Scholar 

  13. Patella F, Schug Z, Persi E et al (2015) Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol Cell Proteomics 14:621–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryu JY, Kim HU, Lee SY (2017) Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism. Proc Natl Acad Sci 114:E9740–E9749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haraldsdóttir HS, Preciat Gonzalez GA, Systems Biochemistry Group U of L Atomically resolve a metabolic reconstruction—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialAtomicallyResolveReconstruction.html

  16. Fleming R, Thiele I Proton shuttle testing with sparse flux balance analysis—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialSparseFBA_protonShuttle.html

  17. Thiele I, Fleming R FastGapFill tutorial—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialFastGapFill.html

  18. Thiele I Example use of functions listed in the Standard operating procedure for metabolic reconstruction—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialReconstructionSOP.html

  19. Thiele I, Fleming R Test physiologically relevant ATP yields from different carbon sources for a metabolic model—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialModelATPYield.html

  20. Fleming R, Thiele I Testing chemical and biochemical fidelity—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialFidelityTesting.html

  21. Thiele I, Fleming R Testing basic properties of a metabolic model (aka sanity checks)—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialModelSanityChecks.html

  22. Achour B, Dantonio A, Niosi M et al (2017) Quantitative characterization of major hepatic UDP-glucuronosyltransferase enzymes in human liver microsomes: comparison of two proteomic methods and correlation with catalytic activity. Drug Metab Dispos 45:1102–1112

    Article  CAS  PubMed  Google Scholar 

  23. Edfors F, Danielsson F, Hallström BM et al (2016) Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol Syst Biol 12:883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zur H, Ruppin E, Shlomi T (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26:3140–3142

    CAS  PubMed  Google Scholar 

  25. Agren R, Bordel S, Mardinoglu A et al (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8:e1002518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 6:401

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pfau T, Richelle A Extraction of context-specific models—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialExtractionTranscriptomic.html

  28. Aurich MK, Arreckx S Metabotools tutorial I—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialMetabotoolsI.html

  29. Aurich MK, Arreckx S Metabotools tutorial II – integration of quantitative metabolomic data—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialMetabotoolsII.html

  30. Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13:344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan H, Cheung CYM, Hilbers PAJ et al (2016) Flux balance analysis of plant metabolism: the effect of biomass composition and model structure on model predictions. Front Plant Sci 7:537

    PubMed  PubMed Central  Google Scholar 

  32. Müller AC, Bockmayr A (2013) Fast thermodynamically constrained flux variability analysis. 29:903–909

    Article  PubMed  CAS  Google Scholar 

  33. Gudmundsson S, Thiele I (2010) Computationally efficient flux variability analysis. BMC Bioinformatics 11:489

    Article  PubMed  PubMed Central  Google Scholar 

  34. Megchelenbrink W, Huynen M, Marchiori E (2014) optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks. PLoS One 9:e86587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Schellenberger J, Palsson BØ (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284:5457–5461

    Article  CAS  PubMed  Google Scholar 

  36. De MD, Mori M, Parisi V (2015) Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding. PLoS One 10:e0122670

    Article  CAS  Google Scholar 

  37. Haraldsdóttir HS, Cousins B, Thiele I et al (2017) CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models. Bioinformatics 33:1741–1743

    Article  PubMed  PubMed Central  Google Scholar 

  38. Haraldsdóttir HS, Preciat Gonzalez GA Uniform sampling—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialUniformSampling.html

  39. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci 99:15112–15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. MOMA—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/modules/analysis/MOMA/index.html?highlight=moma

  41. Heirendt L, Arreckx S, Pfau T et al (2019) Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc 14:639–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schellenberger J, Que R, Fleming R et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. ArrayExpress; EMBL-EBI. https://www.ebi.ac.uk/arrayexpress/

  44. Kolesnikov NN, Hastings EE, Keays MM et al (2015) ArrayExpress update—simplifying data submissions. Nucleic Acids Res 43:D1113–D1116

    Article  CAS  PubMed  Google Scholar 

  45. Kauffmann A, Rayner TF, Parkinson H et al (2009) Importing ArrayExpress datasets into R/bioconductor. 25:2092–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Home – GEO – NCBI. https://www.ncbi.nlm.nih.gov/geo/

  47. Barrett T, Troup DB, Wilhite SE et al (2011) NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res 39:D1005–D1010

    Article  CAS  PubMed  Google Scholar 

  48. PRIDE Archive. https://www.ebi.ac.uk/pride/archive/

  49. Vizcaino JA, Cote R, Csordas A et al (2013) The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41:1063–1069

    Article  CAS  Google Scholar 

  50. PeptideAtlas. http://www.peptideatlas.org/.O112.026617

  51. Deutsch EW, Csordas A, Sun Z et al (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 45:D1100–D1106

    Article  CAS  PubMed  Google Scholar 

  52. Ruffier M, Kähäri A, Komorowska M et al (2017) Ensembl core software resources: storage and programmatic access for DNA sequence and genome annotation. Database (Oxford) 2017

    Google Scholar 

  53. Welcome to MassIVE. https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth

  54. iProX – integrated proteome resources. https://www.iprox.org/

  55. Ma J, Chen T, Wu S et al (2019) iProX: an integrated proteome resource. Nucleic Acids Res 47:D1211–D1217

    Article  PubMed  Google Scholar 

  56. jPOST. Japan proteome standard repository/database. https://jpostdb.org/

    Google Scholar 

  57. Okuda S, Watanabe Y, Moriya Y et al (2017) jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Res 45:D1107–D1111

    Article  CAS  PubMed  Google Scholar 

  58. The Human Protein Atlas. https://www.proteinatlas.org/

  59. MetaboLights – metabolomics experiments and derived information. https://www.ebi.ac.uk/metabolights/

  60. Haug K, Salek RM, Conesa P et al (2013) MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res 41:D781–D786

    Article  CAS  PubMed  Google Scholar 

  61. GenomeRNAi – a database for RNAi phenotypes and reagents. http://www.genomernai.org/

  62. Schmidt EE, Pelz O, Buhlmann S et al (2013) GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic Acids Res 41:D1021–D1026

    Article  CAS  PubMed  Google Scholar 

  63. Japanese Genotype-Phenotype Archive – home. https://www.ddbj.nig.ac.jp/jga/index-e.html

  64. Home. European Genome-Phenome Archive. https://www.ebi.ac.uk/ega/home

  65. Home – dbGaP – NCBI. https://www.ncbi.nlm.nih.gov/gap/

  66. Tryka KA, Hao L, Sturcke A et al (2014) NCBI’s database of genotypes and phenotypes: dbGaP. Nucleic Acids Res 42:D975–D979

    Article  CAS  PubMed  Google Scholar 

  67. Lappalainen I, Almeida-King J, Kumanduri V et al (2015) The European Genome-Phenome Archive of human data consented for biomedical research. Nat Genet 47:692–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thiele I, Swainston N, Fleming R et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–425

    Article  CAS  PubMed  Google Scholar 

  69. Brunk E, Sahoo S, Zielinski DC et al (2018) Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol 36:272–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Swainston N, Smallbone K, Hefzi H et al (2016) Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Duarte N, Becker S, Jamshidi N et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci 104:1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Björnson E, Mukhopadhyay B, Asplund A et al (2015) Stratification of hepatocellular carcinoma patients based on acetate utilization. Cell Rep 13:2014–2026

    Article  PubMed  CAS  Google Scholar 

  73. Mardinoglu A, Agren R, Kampf C et al (2013) Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol 9:649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. http://bigg.ucsd.edu/

  75. Virtual Metabolic Human. https://www.vmh.life/

  76. Noronha A, Modamio J, Jarosz Y et al (2018) The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Res 47:D614–D624

    PubMed Central  Google Scholar 

  77. Metabolics Atlas. https://metabolicatlas.org/

  78. Sigurdsson MI, Jamshidi N, Steingrimsson E et al (2010) A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC Syst Biol 4:140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Mardinoglu A, Shoaie S, Bergentall M et al (2015) The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol 11:834–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Küken A, Nikoloski Z (2019) Computational approaches to design and test plant synthetic metabolic pathways. Plant Physiol 179:894–906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Scheunemann M, Brady SM, Nikoloski Z (2018) Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models. Sci Rep 8:7919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. de OD’MCG, Quek L-E, Palfreyman RW et al (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589

    Article  CAS  Google Scholar 

  83. Lakshmanan M, Lim S-H, Mohanty B et al (2015) Unraveling the light-specific metabolic and regulatory signatures of rice through combined in silico modeling and multiomics analysis. Plant Physiol 169:3002–3020

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yuan H, Cheung CYM, Poolman MG et al (2016) A genome-scale metabolic network reconstruction of tomato ( Solanum lycopersicum L.) and its application to photorespiratory metabolism. Plant J 85:289–304

    Article  CAS  PubMed  Google Scholar 

  85. Seaver SMD, Bradbury LMT, Frelin O et al (2015) Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. Front Plant Sci 6:142

    Article  PubMed  PubMed Central  Google Scholar 

  86. Saha R, Suthers PF, Maranas CD (2011) Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS One 6:e21784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bogart E, Myers CR (2016) Multiscale metabolic modeling of C4 plants: connecting nonlinear genome-scale models to leaf-scale metabolism in developing maize leaves. PLoS One 11:e0151722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hastings J, Mains A, Artal-Sanz M et al (2017) WormJam: a consensus C. elegans metabolic reconstruction and metabolomics community and workshop series. Worm 6:e1373939

    Article  PubMed Central  Google Scholar 

  89. Ma L, Chan AHC, Hattwell J et al (2017) Systems biology analysis using a genome-scale metabolic model shows that phosphine triggers global metabolic suppression in a resistant strain of C elegans. biorxiv 2017:144386

    Google Scholar 

  90. Yilmaz LS, Walhout AJM (2016) A Caenorhabditis elegans genome-scale metabolic network model. Cell Syst 2:297–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gebauer J, Gentsch C, Mansfeld J et al (2016) A genome-scale database and reconstruction of Caenorhabditis elegans metabolism. Cell Syst 2:312–322

    Article  CAS  PubMed  Google Scholar 

  92. Witting M, Hastings J, Rodriguez N et al (2018) Modeling meets metabolomics—the WormJam consensus model as basis for metabolic studies in the model organism Caenorhabditis elegans. Front Mol Biosci 5:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Massaiu I, Pasotti L, Sonnenschein N et al (2019) Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains. Microb Cell Factories 18:3

    Article  Google Scholar 

  94. Zou W, Xiong X, Zhang J et al (2018) Reconstruction and analysis of a genome-scale metabolic model of Methylovorus sp. MP688, a high-level pyrroloquinolone quinone producer. Biosystems 172:37–42

    Article  CAS  PubMed  Google Scholar 

  95. McDermott JE, Yoon H, Nakayasu ES et al (2011) Technologies and approaches to elucidate and model the virulence program of salmonella. Front Microbiol 2:121

    Article  PubMed  PubMed Central  Google Scholar 

  96. Simeonidis E, Price ND (2015) Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol 42:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang H, Marcišauskas S, Sánchez BJ et al (2018) RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput Biol 14:e1006541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Bordbar A, Lewis NE, Schellenberger J et al (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Magnúsdóttir S, Heinken A, Kutt L et al (2016) Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol 35:81–89

    Article  PubMed  CAS  Google Scholar 

  100. Rosario D, Benfeitas R, Bidkhori G et al (2018) Understanding the representative gut microbiota dysbiosis in metformin-treated type 2 diabetes patients using genome-scale metabolic modeling. Front Physiol 9:775

    Article  PubMed  PubMed Central  Google Scholar 

  101. Machado D, Andrejev S, Tramontano M et al (2018) Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res 46:7542–7553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. KEGG: Kyoto Encyclopedia of Genes and Genomes. https://academic.oup.com/nar/article/47/D1/D590/5128935

  103. MetaCyc Metabolic Pathway Database. https://metacyc.org/

  104. Enzyme Database – BRENDA. https://www.brenda-enzymes.org/

  105. Barrett AJ (1995) Enzyme nomenclature. Recommendations 1992. Supplement 2: corrections and additions (1994). Eur J Biochem 232:1–1

    Article  CAS  PubMed  Google Scholar 

  106. Jeske L, Placzek S, Schomburg I et al (2019) BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res 47:D542–D549

    Article  CAS  PubMed  Google Scholar 

  107. Home – Reactome Pathway Database. https://reactome.org/

  108. BioModels. http://www.ebi.ac.uk/biomodels/

  109. Chelliah V, Juty N, Ajmera I et al (2015) BioModels: ten-year anniversary. Nucleic Acids Res 43:D542–D548

    Article  CAS  PubMed  Google Scholar 

  110. Hucka M, Bergmann FT, Dräger A et al (2018) The Systems Biology Markup Language (SBML): language specification for level 3 version 2 core. J Integr Bioinform 15

    Google Scholar 

  111. Büchel F, Rodriguez N, Swainston N et al (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol 7:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Heirendt L, Arreckx S, Pfau T, et al. The COnstraint-based reconstruction and analysis toolbox. https://opencobra.github.io/cobratoolbox/stable/

  113. MATLAB – MathWorks – MATLAB; Simulink. https://uk.mathworks.com/products/matlab.html

  114. CPLEX Optimizer. IBM. https://www.ibm.com/analytics/cplex-optimizer

  115. Gurobi optimization – the state-of-the-art mathematical programming solver. http://www.gurobi.com/

  116. Git – downloading package. https://git-scm.com/download/win

  117. Installation—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/installation.html

  118. Fleming R, Thiele I. Sparse flux balance analysis test for a minimial stoichiometrically balanced cycle involving ATP hydrolysis—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialSparseFBA_freeATPtest.html

  119. Schellenberger J, Lewis NE, Palsson BØ (2011) Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J 100:544–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fleming RMT, Maes CM, Saunders MA et al (2012) A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks. J Theor Biol 292:71–77

    Article  CAS  PubMed  Google Scholar 

  121. Le THA, Pham Dinh T, Le HM et al (2015) DC approximation approaches for sparse optimization. Eur J Oper Res 244:26–46

    Article  Google Scholar 

  122. Bianconi E, Piovesan A, Facchin F et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40:463–471

    Article  PubMed  Google Scholar 

  123. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  124. Agarwala R, Barrett T, Beck J et al (2018) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 46:D8–D13

    Article  CAS  Google Scholar 

  125. Dennis G, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  126. King ZA, Dräger A, Ebrahim A et al (2015) Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput Biol 11:e1004321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. escher. https://escher.github.io/#/

  128. Ebrahim A, Lerman JA, Palsson BO et al (2013) COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst Biol 7:74

    Article  PubMed  PubMed Central  Google Scholar 

  129. Agren R, Liu L, Shoaie S et al (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9:e1002980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  CAS  PubMed  Google Scholar 

  131. MINSEQE: Minimum Information about a high—throughput Nucleotide SeQuencing Experiment—a proposal for standards in functional genomic data reporting (2012)

    Google Scholar 

  132. Smith AC, Eyassu F, Mazat J-P et al (2017) MitoCore: a curated constraint-based model for simulating human central metabolism. BMC Syst Biol 11:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Thiele I, Vlassis N, Fleming RMT (2014) fastGapFill: efficient gap filling in metabolic networks. Bioinformatics 30:2529–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Salvy P, Fengos G, Ataman M et al (2018) pyTFA and matTFA: a Python package and a Matlab toolbox for thermodynamics-based flux analysis, vol 35, pp 167–169

    Google Scholar 

  135. matTFA. https://github.com/EPFL-LCSB/matTFA/tree/master/ext

  136. Noor E, Haraldsdóttir HS, Milo R et al (2013) Consistent estimation of gibbs energy using component contributions. PLoS Comput Biol 9:e1003098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Haraldsdóttir HS, Thiele I, Fleming RMT (2012) Quantitative assignment of reaction directionality in a multicompartmental human metabolic reconstruction. Biophys J 102:1703–1711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Fleming RMT, Thiele I (2011) von Bertalanffy 1.0: a COBRA toolbox extension to thermodynamically constrain metabolic models. Bioinformatics 27:142–143

    Article  CAS  PubMed  Google Scholar 

  139. Thermodynamically constrain a metabolic model—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialVonBertalanffy.html

  140. Reconstruction—the COBRA Toolbox. https://opencobra.github.io/cobratoolbox/latest/modules/reconstruction/index.html

  141. Kim M, Yi JS, Lakshmanan M et al (2015) Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces coelicolor. Biotechnol Bioeng 113(3):651–660

    Article  PubMed  CAS  Google Scholar 

  142. Jóhannsson F, Guðmundsson S, Paglia G et al (2018) Systems analysis of metabolism in platelet concentrates during storage in platelet additive solution. Biochem J 475:2225–2240

    Article  PubMed  CAS  Google Scholar 

  143. Mcgarrity S, Anuforo Ó, Halldórsson H et al (2018) Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification. Sci Rep 8:6811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Halldorsson S, Rohatgi N, Magnusdottir M et al (2017) Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett 396:117–129

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Óttar Rolfsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McGarrity, S., Karvelsson, S.T., Sigurjónsson, Ó.E., Rolfsson, Ó. (2020). Comparative Metabolic Network Flux Analysis to Identify Differences in Cellular Metabolism. In: Nagrath, D. (eds) Metabolic Flux Analysis in Eukaryotic Cells. Methods in Molecular Biology, vol 2088. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0159-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0159-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0158-7

  • Online ISBN: 978-1-0716-0159-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics