Skip to main content

Measurements of Hydrocarbon Pollutants in Aqueous Samples Using Bacterial Bioreporter Assays

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Bacterial bioreporters are useful tools for analyzing the bioavailability and/or toxic effects of hydrocarbons, especially in aqueous samples. Bioreporters generally consist of a recombinant organism in which a genetic circuit is placed that serves to produce an easily detectable reporter protein in response to contact with the hydrocarbon. In this part, we will mainly focus on reporter assays for short-chain linear alkanes and aromatic solvents with two different inducible reporter proteins (e.g., LuxAB luciferase and EGFP or enhanced green fluorescent protein). We will outline a few procedures on the types of assays that can be performed with the bacterial bioreporters in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jouanneau S, Durand MJ, Courcoux P, Blusseau T, Thouand G (2011) Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Environ Sci Technol 45:2925–2931

    Article  CAS  PubMed  Google Scholar 

  2. Chang CY, Yu HY, Chen JJ, Li FB, Zhang HH, Liu CP (2014) Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ Monit Assess 186:1547–1560

    Article  CAS  PubMed  Google Scholar 

  3. Yuan H, Li T, Ding X, Zhao G, Ye S (2014) Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in surface soils of the Yellow River Delta, China. Mar Pollut Bull 83:258–264

    Article  CAS  PubMed  Google Scholar 

  4. Crane JL (2014) Source apportionment and distribution of polycyclic aromatic hydrocarbons, risk considerations, and management implications for urban stormwater pond sediments in Minnesota, USA. Arch Environ Contam Toxicol 66:176–200

    Article  CAS  PubMed  Google Scholar 

  5. Webb E, Bushkin-Bedient S, Cheng A, Kassotis CD, Balise V, Nagel SC (2014) Developmental and reproductive effects of chemicals associated with unconventional oil and natural gas operations. Rev Environ Health 29:307–318

    Article  CAS  PubMed  Google Scholar 

  6. Doherty VF, Otitoloju AA (2013) Monitoring of soil and groundwater contamination following a pipeline explosion and petroleum product spillage in Ijegun, Lagos Nigeria. Environ Monit Assess 185:4159–4170

    Article  CAS  PubMed  Google Scholar 

  7. Yang X, Duan J, Wang L, Li W, Guan J, Beecham S, Mulcahy D (2015) Heavy metal pollution and health risk assessment in the Wei River in China. Environ Monit Assess 187:4202

    Google Scholar 

  8. Obinaju BE, Graf C, Halsall C, Martin FL (2015) Linking biochemical perturbations in tissues of the African catfish to the presence of polycyclic aromatic hydrocarbons in Ovia River, Niger Delta region. Environ Pollut 201:42–49

    Article  CAS  PubMed  Google Scholar 

  9. Affum AO et al (2015) Total coliforms, arsenic and cadmium exposure through drinking water in the Western Region of Ghana: application of multivariate statistical technique to groundwater quality. Environ Monit Assess 187:1

    Article  CAS  PubMed  Google Scholar 

  10. Yin F, John GF, Hayworth JS, Clement TP (2015) Long-term monitoring data to describe the fate of polycyclic aromatic hydrocarbons in Deepwater Horizon oil submerged off Alabama’s beaches. Sci Total Environ 508:46–56

    Article  CAS  PubMed  Google Scholar 

  11. Yin F, Hayworth JS, Clement TP (2015) A tale of two recent spills-comparison of 2014 galveston bay and 2010 deepwater horizon oil spill residues. PLoS One 10, e0118098

    Article  PubMed  PubMed Central  Google Scholar 

  12. Di Leonardo R, Mazzola A, Tramati CDD, Vaccaro A, Vizzini S (2012) Highly contaminated areas as sources of pollution for adjoining ecosystems: The case of Augusta Bay (Central Mediterranean). Mar Pollut Bull 89:417–426

    Article  Google Scholar 

  13. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    Article  CAS  PubMed  Google Scholar 

  14. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738

    Article  CAS  PubMed  Google Scholar 

  15. Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensors--are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280

    Article  CAS  PubMed  Google Scholar 

  16. Woutersen M, Belkin S, Brouwer B, van Wezel AP, Heringa MB (2011) Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal Bioanal Chem 400:915–929

    Article  CAS  PubMed  Google Scholar 

  17. van der Meer JR (2010) Bacterial sensors: synthetic design and application principles. Amos M (ed) Synthesis lectures on synthetic biology, vol 2. Morgan & Claypool

    Google Scholar 

  18. van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522

    Article  PubMed  Google Scholar 

  19. van der Meer JR, Tropel D, Jaspers MCM (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020

    Article  PubMed  Google Scholar 

  20. Stocker J, Balluch D, Gsell M, Harms H, Feliciano JS, Daunert S, Malik KA, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750

    Article  CAS  PubMed  Google Scholar 

  21. Sticher P, Jaspers M, Harms H, Zehnder AJB, van der Meer JR (1997) Development and characterization of a whole cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63:4053–4060

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Applegate BM, Kehrmeyer SR, Sayler GS (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethylbenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64:2730–2735

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tecon R, Beggah S, Czechowska K, Sentchilo V, Chronopoulou PM, McGenity TJ, van der Meer JR (2010) Development of a multistrain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments. Environ Sci Technol 144:1049–1055

    Article  Google Scholar 

  24. Cortés-Salazar F, Beggah S, van der Meer JR, Girault HH (2013) Electrochemical As(III) whole-cell based biochip sensor. Biosens Bioelectron 47:237–242

    Article  PubMed  Google Scholar 

  25. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  26. Heitzer A, Applegate B, Kehrmeyer S, Pinkart H, Webb OF, Phelps TJ, White DC, Sayler GS (1998) Physiological considerations of environmental applications of lux reporter fusions. J Microbiol Methods 33:45–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the EC-FP7 program (BRAAVOO, OCEAN-2013-614010) and the Swiss National Science Foundation Nano-Tera program (Envirobot, 20NA21-143082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Roelof van der Meer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Le Digabel, Y., Beggah, S., van der Meer, J.R. (2015). Measurements of Hydrocarbon Pollutants in Aqueous Samples Using Bacterial Bioreporter Assays. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_135

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_135

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52791-7

  • Online ISBN: 978-3-662-52793-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics