Skip to main content

Glycolytic Profiling of Mouse Embryonic Stem Cells (mESCs)

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2520))

  • 1500 Accesses

Abstract

Mouse embryonic stem cells (mESCs) can be captured in vitro in different pluripotency states through media modulation, mimicking their natural environment during early embryo development. As highly proliferative cells, mESCs prefer to use glycolysis to support the energetic and biosynthetic demands, even in the presence of oxygen. Indeed, glycolysis can not only supply ATP at a much faster rate, when compared to other catabolic pathways, but also provides biosynthetic substrates to meet anabolic requirements. Considering that ESCs cultured in different media conditions display distinct metabolic requirements, it is of utmost importance to have a robust metabolic characterization methodology to understand how subtle metabolic variations may be coupled to ESC identity. Here we describe how to profile the glycolytic activity of naive mouse ESC, using the established Seahorse XFe24 Live-cell Metabolic Assay. This may be a useful protocol for understanding how the glycolytic function of mESCs changes in certain circumstances and how is it coupled to diverse pluripotency/differentiation phenotypes.

Bibiana Correia and Maria Inês Sousa contributed equally and should be considered co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nichols J, Smith A (2012) Pluripotency in the embryo and in culture. Cold Spring Harbor Perspect Biol 4(8):1–154. https://doi.org/10.1101/cshperspect.a008128

    Article  CAS  Google Scholar 

  2. De Los Angeles A, Ferrari F, Xi R et al (2015) Hallmarks of pluripotency. Nature 525:469–478. https://doi.org/10.1038/nature15515

    Article  CAS  Google Scholar 

  3. Weinberger L, Ayyash M, Novershtern N et al (2016) Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 17:155–169. https://doi.org/10.1038/nrm.2015.28

    Article  CAS  PubMed  Google Scholar 

  4. Brons IGM, Smithers LE, Trotter MWB et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195. https://doi.org/10.1038/nature05950

    Article  CAS  PubMed  Google Scholar 

  5. Tesar PJ, Chenoweth JG, Brook FA et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199. https://doi.org/10.1038/nature05972

    Article  CAS  PubMed  Google Scholar 

  6. Mathieu J, Ruohola-Baker H (2017) Metabolic remodeling during the loss and acquisition of pluripotency. Development 144:541–551. https://doi.org/10.1242/dev.128389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsogtbaatar E, Landin C, Minter-Dykhouse K et al (2020) Energy metabolism regulates stem cell pluripotency. Front Cell Dev Biol 8:1–16. https://doi.org/10.3389/fcell.2020.00087

    Article  Google Scholar 

  8. Varum S, Rodrigues AS, Moura MB et al (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6(6):e20914. https://doi.org/10.1371/journal.pone.0020914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pereira SL, Rodrigues AS, Sousa MI et al (2014) From gametogenesis and stem cells to cancer: common metabolic themes. Hum Reprod Update 20:924–943. https://doi.org/10.1093/humupd/dmu034

    Article  CAS  PubMed  Google Scholar 

  10. Rodrigues AS, Correia M, Gomes A et al (2015) Dichloroacetate, the pyruvate dehydrogenase complex and the modulation of mESC pluripotency. PLoS One 10:e0131663. https://doi.org/10.1371/journal.pone.0131663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodrigues AS, Pereira SL, Correia M et al (2015) Differentiate or die: 3-Bromopyruvate and pluripotency in mouse embryonic stem cells. PLoS One 10:e0135617. https://doi.org/10.1371/journal.pone.0135617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nelson DL, Cox MM (2017) Lehninger principles of biochemistry, 7th edn. W. H. Freeman and Company All, New York

    Google Scholar 

  13. Roosterman D, Meyerhof W, Cottrell GS (2018) Proton transport chains in glucose metabolism: mind the proton. Front Neurosci 12:1–15. https://doi.org/10.3389/fnins.2018.00404

    Article  Google Scholar 

  14. Sousa MI, Rodrigues AS, Pereira S et al (2015) Mitochondrial mechanisms of metabolic reprogramming in proliferating cells. Curr Med Chem 22:2493–2504. https://doi.org/10.2174/0929867322666150514095718

    Article  CAS  PubMed  Google Scholar 

  15. Folmes CDL, Nelson TJ, Dzeja PP et al (2012) Energy metabolism plasticity enables stemness programs. Ann N Y Acad Sci 1254:82–89. https://doi.org/10.1111/j.1749-6632.2012.06487.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu S, Li W, Zhou H et al (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7:651–655. https://doi.org/10.1016/j.stem.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  17. Folmes CDL, Nelson TJ, Martinez-Fernandez A et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271. https://doi.org/10.1016/j.cmet.2011.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim H, Jang H, Kim TW et al (2015) Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem Cells 33:2699–2711. https://doi.org/10.1002/stem.2073

    Article  CAS  PubMed  Google Scholar 

  19. Yu L, Ji K, Zhang J et al (2019) Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer. Protein Cell 10:668–680. https://doi.org/10.1007/s13238-019-0637-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang X, Yalcin S, Lee D-F et al (2011) FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nat Cell Biol 13:1092–1099. https://doi.org/10.1038/ncb2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee S, Dong HH (2017) FoxO integration of insulin signaling with glucose and lipid metabolism. J Endocrinol 233:R67–R79. https://doi.org/10.1530/JOE-17-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Varum S, Momčilović O, Castro C et al (2009) Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res 3:142–156. https://doi.org/10.1016/j.scr.2009.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pereira SL, Grãos M, Rodrigues AS et al (2013) Inhibition of mitochondrial complex III blocks neuronal differentiation and maintains embryonic stem cell pluripotency. PLoS One 8:e82095. https://doi.org/10.1371/journal.pone.0082095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the members of the Biology of Reproduction and Stem Cells research group, at the Center from Neuroscience and Cell Biology, for the discussion and constructive feedback related to this work.

Funding

This work was funded by Fundação para a Ciência e Tecnologia (FCT) Portugal: PhD scholarship attributed to B.C. (SFRH/BD/144150/2019), the STEM@REST Project (CENTRO-01-0145-FEDER-028871) and PAC CANCEL_STEM (POCI-01-0145-FEDER-016390. M.I.S. was hired through the STEM@REST Project (CENTRO-01-0145-FEDER-028871). Additional funding was provided by the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme: project CENTRO-01-0145-FEDER-000012-HealthyAging2020, the COMPETE 2020—Operational Programme for Competitiveness and Internationalisation, and the Portuguese national funds via FCT—Fundação para a Ciência e a Tecnologia, I.P.: project POCI-01-0145-FEDER-007440, that attributed a fellowship to B. C. (BIM—IN0828).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ramalho-Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Correia, B., Sousa, M.I., Ramalho-Santos, J. (2021). Glycolytic Profiling of Mouse Embryonic Stem Cells (mESCs). In: Turksen, K. (eds) Embryonic Stem Cell Protocols . Methods in Molecular Biology, vol 2520. Humana, New York, NY. https://doi.org/10.1007/7651_2021_449

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_449

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2436-4

  • Online ISBN: 978-1-0716-2437-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics