Skip to main content

Embryoid Body Formation from Mouse and Human Pluripotent Stem Cells for Transplantation to Study Brain Microenvironment and Cellular Differentiation

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Abstract

Human embryonic stem cell (hESC) and human-induced pluripotent stem cell (hiPSC) technologies have a critical role in regenerative strategies for personalized medicine. Both share the ability to differentiate into almost any cell type of the human body. The study of their properties and clinical applications requires the development of robust and reproducible cell culture paradigms that direct cell differentiation toward a specific phenotype in vitro and in vivo. Our group evaluated the potential of mouse ESCs (mESCs), hESCs, and hiPSCs (collectively named pluripotent stem cells, PSCs) to analyze brain microenvironments through the use of embryoid body (EB)-derived cells from these cell sources. EB are cell aggregates in 3D culture conditions that recapitulate embryonic development. Our approach focuses on studying the midbrain dopaminergic phenotype and transplanting EB into the substantia nigra pars compacta (SNpc) in a Parkinson’s disease rodent model. Here, we describe cell culture protocols for EB generation from PSCs that show significant in vivo differentiation toward dopaminergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5(1):111–123. https://pubmed.ncbi.nlm.nih.gov/19570518/. [cited 2021 Apr 12]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giandomenico SL, Sutcliffe M, Lancaster MA (2020) Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat Protoc 16(2) https://pubmed.ncbi.nlm.nih.gov/33328611/. [cited 2021 Mar 18]

  3. Wu J, Izpisua Belmonte JC (2016) Stem cells: a renaissance in human biology research. In: Cell, vol 165. Cell Press, pp 1572–1585. https://doi.org/10.1016/j.cell.2016.05.043. [cited 2021 Apr 12]

    Chapter  Google Scholar 

  4. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12 II):7634–7638. https://pubmed.ncbi.nlm.nih.gov/6950406/. [cited 2021 Mar 30]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz AA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  6. Landry DW, Zucker HA (2004) Embryonic death and the creation of human embryonic stem cells. J Clin Invest 114:1184–1186. https://pubmed.ncbi.nlm.nih.gov/15520846/. [cited 2021 Mar 30]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schüle B, Pera RAR, Langston JW (2009) Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochim Biophys Acta 1792:1043–1051. https://pubmed.ncbi.nlm.nih.gov/19733239/. [cited 2021 Apr 29]

    Article  PubMed  Google Scholar 

  8. Paik DT, Chandy M, Wu JC (2020) Patient and disease–specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacol Rev 72(1):320–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arenas E, Denham M, Villaescusa JC (2015) How to make a midbrain dopaminergic neuron. Development 142(11):1918–1936. https://pubmed.ncbi.nlm.nih.gov/26015536/. [cited 2021 Apr 12]

    Article  CAS  PubMed  Google Scholar 

  10. Doss MX, Sachinidis A (2019) Current challenges of iPSC-based disease modeling and therapeutic implications. Cell 8(5):403

    Article  CAS  Google Scholar 

  11. Maya-Espinosa G, Collazo-Navarrete O, Millán-Aldaco D, Palomero-Rivero M, Guerrero-Flores G, Drucker-Colín R et al (2015) Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain. Stem Cells 33(2):491–502

    Article  CAS  PubMed  Google Scholar 

  12. Collazo-Navarrete O, Hernández-García D, Guerrero-Flores G, Drucker-Colín R, Guerra-Crespo M, Covarrubias L (2019) The substantia nigra is permissive and gains inductive signals when lesioned for dopaminergic differentiation of embryonic stem cells. Stem Cells Dev 28(16):1104–1115

    Article  CAS  PubMed  Google Scholar 

  13. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041. https://www.nature.com/articles/nature08797. [cited 2021 Apr 22]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133. https://www.nature.com/articles/nbt1201-1129. [cited 2021 Apr 22]

    Article  CAS  PubMed  Google Scholar 

  15. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S et al (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28(1):31–40. https://pubmed.ncbi.nlm.nih.gov/11086981/. [cited 2021 Apr 22]

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H et al (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8(3):288–296. https://www.nature.com/articles/nn1402. [cited 2021 Apr 28]

    Article  CAS  PubMed  Google Scholar 

  17. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18(6):675–679. https://www.nature.com/articles/nbt0600_675. [cited 2021 Apr 22]

    Article  CAS  PubMed  Google Scholar 

  18. Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N et al (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418(6893):50–56. https://pubmed.ncbi.nlm.nih.gov/12077607/. [cited 2021 Apr 26]

    Article  CAS  PubMed  Google Scholar 

  19. Friling S, Andersson E, Thompson LH, Jönsson ME, Hebsgaard JB, Nanou E et al (2009) Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc Natl Acad Sci U S A 106(18):7613–7618. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2671325&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sánchez-Danés A, Consiglio A, Richaud Y, Rodríguez-Pizà I, Dehay B, Edel M et al (2012) Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells. Hum Gene Ther 23(1):56–69. http://www.liebertonline.com/doi/abs/10.1089/hum.2011.054

    Article  PubMed  Google Scholar 

  21. Zhu F, Gamboa M, Farruggio AP, Hippenmeyer S, Tasic B, Schüle B et al (2014) DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res 42(5):e34. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950688/pdf/gkt1290.pdf

    Article  CAS  PubMed  Google Scholar 

  22. Jozefczuk J, Drews K, Adjaye J (2012) Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp 64:1–5. http://www.jove.com/video/3854/. [cited 2021 Mar 18]

    Google Scholar 

  23. Miyamoto D, Nakazawa K (2016) Differentiation of mouse iPS cells is dependent on embryoid body size in microwell chip culture. J Biosci Bioeng 122(4):507–512. https://pubmed.ncbi.nlm.nih.gov/27090344/. [cited 2021 Mar 18]

    Article  CAS  PubMed  Google Scholar 

  24. Antonchuk J (2013) Formation of embryoid bodies from human pluripotent stem cells using AggreWell™ plates. Methods Mol Biol 946:523–533. https://pubmed.ncbi.nlm.nih.gov/23179853/. [cited 2021 Apr 29]

    Article  CAS  PubMed  Google Scholar 

  25. Baizabal JM, Covarrubias L (2009) The embryonic midbrain directs neuronal specification of embryonic stem cells at early stages of differentiation. Dev Biol 325(1):49–59. https://doi.org/10.1016/j.ydbio.2008.09.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by IN211419 DGAPA-PAPIIT and CONACYT No. A1-S-10064. We are grateful to Brandt Bertrand for his help editing the manuscript and Marcela Palomero-Rivero and Francisco Pérez-Eugenio for their critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Guerra-Crespo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guerra-Crespo, M., Collazo-Navarrete, O., Ramos-Acevedo, R., Morato-Torres, C.A., Schüle, B. (2021). Embryoid Body Formation from Mouse and Human Pluripotent Stem Cells for Transplantation to Study Brain Microenvironment and Cellular Differentiation. In: Turksen, K. (eds) Embryonic Stem Cell Protocols . Methods in Molecular Biology, vol 2520. Humana, New York, NY. https://doi.org/10.1007/7651_2021_433

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_433

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2436-4

  • Online ISBN: 978-1-0716-2437-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics