Skip to main content

Production of Innervated Skeletal Muscle Fibers Using Human Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2454))

Abstract

Only a limited number of large-scale protocols describe the production of mature skeletal muscle fibers from human induced pluripotent stem cells (hiPSCs). Here we describe a novel procedure for simultaneous differentiation of hiPSC into muscle cells and motor neurons, that generates innervated and contractile multinucleated skeletal muscle fibers with sarcomeric organization. Our protocol permits the production of expandable skeletal muscle progenitor cells and mature skeletal muscle fibers that can be used for the exploration of skeletal muscle differentiation for basic research, disease modeling, and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Onder TT, Daley GQ (2012) New lessons learned from disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 22(5):500–508. https://doi.org/10.1016/j.gde.2012.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381):295–305. https://doi.org/10.1038/nature10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Inoue H, Nagata N, Kurokawa H, Yamanaka S (2014) iPS cells: a game changer for future medicine. EMBO J 33(5):409–417. https://doi.org/10.1002/embj.201387098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walmsley GG, Hyun J, McArdle A, Senarath-Yapa K, Hu MS, Chung MT et al (2014) Induced pluripotent stem cells in regenerative medicine and disease modeling. Curr Stem Cell Res Ther 9(2):73–81

    Article  CAS  Google Scholar 

  5. Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164(1):87–101. https://doi.org/10.1006/dbio.1994.1182

    Article  CAS  PubMed  Google Scholar 

  6. Wobus AM, Guan K, Yang HT, Boheler KR (2002) Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol Biol 185:127–156

    CAS  PubMed  Google Scholar 

  7. Kennedy KA, Porter T, Mehta V, Ryan SD, Price F, Peshdary V et al (2009) Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative beta-catenin. BMC Biol 7:67. https://doi.org/10.1186/1741-7007-7-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng JK, Wang Y, Karandikar A, Wang Q, Gai H, Liu AL et al (2006) Skeletal myogenesis by human embryonic stem cells. Cell Res 16(8):713–722. https://doi.org/10.1038/sj.cr.7310080

    Article  CAS  PubMed  Google Scholar 

  9. Darabi R, Gehlbach K, Bachoo RM, Kamath S, Osawa M, Kamm KE et al (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14(2):134–143. https://doi.org/10.1038/nm1705

    Article  CAS  PubMed  Google Scholar 

  10. Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O, Hick A et al (2015) Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 33(9):962–969. https://doi.org/10.1038/nbt.3297

    Article  CAS  PubMed  Google Scholar 

  11. Xi H, Fujiwara W, Gonzalez K, Jan M, Liebscher S, Van Handel B et al (2017) In vivo human somitogenesis guides somite development from hPSCs. Cell Rep 18(6):1573–1585. https://doi.org/10.1016/j.celrep.2017.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi IY, Lim H, Estrellas K, Mula J, Cohen TV, Zhang Y et al (2016) Concordant but varied phenotypes among duchenne muscular dystrophy patient-specific myoblasts derived using a human iPSC-based model. Cell Rep 15(10):2301–2312. https://doi.org/10.1016/j.celrep.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  13. Mayeuf-Louchart A, Lagha M, Danckaert A, Rocancourt D, Relaix F, Vincent SD et al (2014) Notch regulation of myogenic versus endothelial fates of cells that migrate from the somite to the limb. Proc Natl Acad Sci U S A 111(24):8844–8849. https://doi.org/10.1073/pnas.1407606111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by Association Française contre les Myopathies (AFM, TRIM-RD program) and Region Provence Alpes Côte d’Azur (Cladimus project, 2018-06436). M.D. is the recipient of a fellowship from the French Ministry of Research and Higher Education. The project leading to this chapter has received funding from the Excellence Initiative of Aix-Marseille University-A*Midex, a French “investissement d’avenir programme” AMX-19-IET-007 through the Marseille Maladies Rares (MarMaRa) Institute. Mégane Delourme and Natacha Broucqsault contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Magdinier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Delourme, M., Broucqsault, N., Mazaleyrat, K., Magdinier, F. (2020). Production of Innervated Skeletal Muscle Fibers Using Human Induced Pluripotent Stem Cells. In: Nagy, A., Turksen, K. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 2454. Humana, New York, NY. https://doi.org/10.1007/7651_2020_334

Download citation

  • DOI: https://doi.org/10.1007/7651_2020_334

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2118-9

  • Online ISBN: 978-1-0716-2119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics