Skip to main content

Preparation and Characterization of Simvastatin Nanocapsules: Encapsulation of Hydrophobic Drugs in Calcium Alginate

  • Protocol
  • First Online:
Stem Cell Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2125))

Abstract

During past few years, development of methods for physical encapsulation of drugs in biocompatible materials in mild conditions for poorly water-soluble hydrophobic drugs which are sensitive to hydrolytic conditions is of high interest in biomedical and pharmaceutical industries. The encapsulation can improve the drug solubility while decreases its side effects besides controlling its pharmacokinetic profile which results in the overall improvement of the therapeutic efficacy. In the current paper, we provide a detailed protocol for encapsulation of poorly water-soluble hydrophobic drugs which is a development of the previously developed protocol of nanocapsule formation by complex formation on the interface of emulsion droplets. The newly developed protocol is based on nanocapsule formation by complex formation on the interface of emulsion droplets except using no organic solvent for potential targeted drug delivery to glioblastoma cells. Simvastatin as a model of hydrophobic drugs of high hydrolytic sensitivity was encapsulated in calcium alginate hydrogel as a biocompatible matrix using the developed protocol. Simvastatin belongs to a group of mevalonate cascade inhibitors (statins) which have recently been considered as a possible new approach in cancer treatment especially glioblastoma. As a cholesterol biosynthesis inhibitor, it is very important to deliver statins only to target cells and not intact cells using targeted drug delivery strategies to avoid dysregulation of cholesterol biosynthesis in normal tissue. To prepare the statin drug nanocarrier’s, the drug was first dissolved in polysorbate 20 nonionic surfactant solution, and then peptide modified calcium alginate was deposited on the micelles interface at neutral pH and 30 °C. The prepared nanocapsules were spherical in shape and very small in size (i.e., 17 ± 5 nm). The drug content of the nanocapsules was 117.3 mg g−1 and the drug loading efficiency for a 5-mg initial amount of the drug was 23.5% ± 3.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kalepu S, Nekkanti V (2015) Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 5(5):442–453. https://doi.org/10.1016/j.apsb.2015.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  2. Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. ISRN Pharm 2012:1–10. https://doi.org/10.5402/2012/195727

    Article  CAS  Google Scholar 

  3. Singh D, Bedi N, Tiwary AK (2017) Enhancing solubility of poorly aqueous soluble drugs: critical appraisal of techniques. J Pharm Investig. https://doi.org/10.1007/s40005-017-0357-1

    Article  Google Scholar 

  4. Messana L (2017) Nanotechnology in drug delivery: fundamentals, design, and applications. Scitus Academics LLC

    Google Scholar 

  5. Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–7309. https://doi.org/10.2147/IJN.S146315

    Article  PubMed  PubMed Central  Google Scholar 

  6. Loh ZH, Samanta AK, Sia Heng PW (2015) Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 10(4):255–274. https://doi.org/10.1016/j.ajps.2014.12.006

    Article  Google Scholar 

  7. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223. https://doi.org/10.1016/j.yexmp.2008.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Srinivasarao M, Low PS (2017) Ligand-targeted drug delivery. Chem Rev 117(19):12133–12164. https://doi.org/10.1021/acs.chemrev.7b00013

    Article  CAS  PubMed  Google Scholar 

  9. Liu L, Jiang L, Xu GK, Ma C, Yang XG, Yao JM (2014) Potential of alginate fibers incorporated with drug-loaded nanocapsules as drug delivery systems. J Mater Chem B 2(43):7596–7604. https://doi.org/10.1039/C4TB01392A

    Article  CAS  Google Scholar 

  10. Leong J-Y, Lam W-H, Ho K-W, Voo W-P, Lee MF-X, Lim H-P, Lim S-L, Tey B-T, Poncelet D, Chan E-S (2016) Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 24:44–60. https://doi.org/10.1016/j.partic.2015.09.004

    Article  CAS  Google Scholar 

  11. Paques JP, van der Linden E, van Rijn CJM, Sagis LMC (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 209:163–171. https://doi.org/10.1016/j.cis.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  12. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2(1):8–21. https://doi.org/10.1016/j.nano.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  13. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1):113–142. https://doi.org/10.1016/j.ijpharm.2009.10.018

    Article  CAS  PubMed  Google Scholar 

  14. Lertsutthiwong P, Noomun K, Jongaroonngamsang N, Rojsitthisak P, Nimmannit U (2008) Preparation of alginate nanocapsules containing turmeric oil. Carbohydr Polym 74(2):209–214. https://doi.org/10.1016/j.carbpol.2008.02.009

    Article  CAS  Google Scholar 

  15. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55(1):R1–R4. https://doi.org/10.1016/0378-5173(89)90281-0

    Article  CAS  Google Scholar 

  16. Alizadeh J, Zeki AA, Mirzaei N, Tewary S, Rezaei Moghadam A, Glogowska A, Nagakannan P, Eftekharpour E, Wiechec E, Gordon JW, Xu FY, Field JT, Yoneda KY, Kenyon NJ, Hashemi M, Hatch GM, Hombach-Klonisch S, Klonisch T, Ghavami S (2017) Mevalonate cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Sci Rep 7:44841. https://doi.org/10.1038/srep44841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Likus W, Siemianowicz K, Bienk K, Pakula M, Pathak H, Dutta C, Wang Q, Shojaei S, Assaraf YG, Ghavami S, Cieslar-Pobuda A, Los MJ (2016) Could drugs inhibiting the mevalonate pathway also target cancer stem cells? Drug Resist Updat 25:13–25. https://doi.org/10.1016/j.drup.2016.02.001

    Article  PubMed  Google Scholar 

  18. Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, Freed DH, Hashemi M, Shojaei S, Zeki AA, Ghavami S (2014) Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther 143(1):87–110. https://doi.org/10.1016/j.pharmthera.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghavami S, Sharma P, Yeganeh B, Ojo OO, Jha A, Mutawe MM, Kashani HH, Los MJ, Klonisch T, Unruh H, Halayko AJ (2014) Airway mesenchymal cell death by mevalonate cascade inhibition: integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins. Biochim Biophys Acta 1843(7):1259–1271. https://doi.org/10.1016/j.bbamcr.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  20. Murtaza G (2012) Solubility enhancement of simvastatin: a review. Acta Pol Pharm 69(4):581–590

    CAS  PubMed  Google Scholar 

  21. Alvarez-Lueje A, Valenzuela C, Squella JA, Nunez-Vergara LJ (2005) Stability study of simvastatin under hydrolytic conditions assessed by liquid chromatography. J AOAC Int 88(6):1631–1636

    Article  CAS  Google Scholar 

  22. Nielsen SF, Nordestgaard BG, Bojesen SE (2013) Statin use and reduced cancer-related mortality. N Engl J Med 368(6):576–577. https://doi.org/10.1056/NEJMc1214827

    Article  PubMed  Google Scholar 

  23. Oberoi RK, Parrish KE, Sio TT, Mittapalli RK, Elmquist WF, Sarkaria JN (2016) Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. Neuro Oncol 18(1):27–36. https://doi.org/10.1093/neuonc/nov164

    Article  CAS  PubMed  Google Scholar 

  24. Zhang M, Chen X, Ying M, Gao J, Zhan C, Lu W (2017) Glioma-targeted drug delivery enabled by a multifunctional peptide. Bioconjug Chem 28(3):775–781. https://doi.org/10.1021/acs.bioconjchem.6b00617

    Article  CAS  PubMed  Google Scholar 

  25. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61(46):10827–10852. https://doi.org/10.1016/j.tet.2005.08.031

    Article  CAS  Google Scholar 

  26. Bhowmik BB, Sa B, Mukherjee A (2006) Preparation and in vitro characterization of slow release testosterone nanocapsules in alginates. Acta Pharm 56(4):417–429

    CAS  PubMed  Google Scholar 

  27. Santhi K, Dhanraj S, Nagasamyvenkatesh D, Sangeetha S, Suresh B (2005) Preparation and optimization of sodium alginate nanospheres of methotrexate. Indian J Pharm Sci 67(6):691–696

    CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by National Institute for Medical Research Development (NIMAD), operating grant number #943267. SG was also supported by Health Science Foundation general operating grant and Research Manitoba New Investigator Operating grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Ghavami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahmadi, M., Madrakian, T., Ghavami, S. (2018). Preparation and Characterization of Simvastatin Nanocapsules: Encapsulation of Hydrophobic Drugs in Calcium Alginate. In: Turksen, K. (eds) Stem Cell Nanotechnology. Methods in Molecular Biology, vol 2125. Humana, New York, NY. https://doi.org/10.1007/7651_2018_191

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_191

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0359-8

  • Online ISBN: 978-1-0716-0360-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics