Skip to main content

Cloning of Autophagy-Related MicroRNAs

  • Protocol
  • First Online:
Autophagy in Differentiation and Tissue Maintenance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1854))

Abstract

Autophagy is a cellular survival pathway that is necessary for the degradation of cellular constituents such as long-lived proteins and damaged organelles. Conditions resulting in cellular stress such as starvation or hypoxia might activate autophagy. Being at the crossroads of various cellular response pathways, dysregulation of autophagy might result in pathological states including cancer and neurodegenerative diseases. Autophagy has also been shown to participate in stemness. MicroRNAs were introduced as novel regulators of autophagy, and accumulating results underlined the fact that they constituted an important layer of biological control mechanism on the autophagic activity.

MicroRNAs are protein noncoding small RNAs that control cellular levels of transcripts and proteins through posttrancriptional mechanisms. Novel miRNAs in human and mouse genomes are yet to be identified. Considering the emerging role of autophagy in health and disease, identification of novel autophagy-regulating miRNAs and determination of relations between miRNA expression and physiological and pathological conditions might contribute to a better understanding of mechanisms governing health and disease. High-throughput techniques were developed for miRNA profiling, yet for a thorough characterization and miRNA target determination, miRNA cloning remains as an important step. Here, we describe a modified miRNA cloning method for the characterization of novel autophagy-regulating miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. https://doi.org/10.1152/physrev.00030.2009

    Article  CAS  PubMed  Google Scholar 

  2. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23(16):2891–2906. https://doi.org/10.1038/sj.onc.1207521

    Article  PubMed  CAS  Google Scholar 

  3. Pan H, Cai N, Li M, Liu G, Belmonte J (2013) Autophagic control of cell stemness’. EMBO Mol Med 5(3):327–331. https://doi.org/10.1002/emmm.201201999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ et al (2010) FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116:4806–4814. https://doi.org/10.1182/blood-2010-06-288589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon H-U (2012) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22:432–435. https://doi.org/10.1038/cr.2011.200

    Article  PubMed  CAS  Google Scholar 

  6. Vazquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, de Pablo F (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8:187–199. https://doi.org/10.4161/auto.8.2.18535

    Article  PubMed  CAS  Google Scholar 

  7. Tra T, Gong L, Kao LP, Li XL, Grandela C, Devenish RJ et al (2011) Autophagy in human embryonic stem cells. PLoS One 6:e27485. https://doi.org/10.1371/journal.pone.0027485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Menendez JA, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez-Martin A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle 10:3658–3677. https://doi.org/10.4161/cc.10.21.18128

    Article  PubMed  CAS  Google Scholar 

  9. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385. https://doi.org/10.1038/nrm1644

    Article  PubMed  CAS  Google Scholar 

  10. Gozuacik D, Akkoc Y, Ozturk DG, Kocak M (2017) Autophagy-regulating microRNAs and cancer. Front Oncol 7. https://doi.org/10.3389/fonc.2017.00065

  11. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I et al (2004) Micro-RNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14(12):2486–2494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditiselegans. Science 294(5543):862–864

    Article  PubMed  CAS  Google Scholar 

  14. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tinyRNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862

    Article  PubMed  CAS  Google Scholar 

  15. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    Article  PubMed  CAS  Google Scholar 

  16. Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43:110–117. https://doi.org/10.1016/j.ymeth.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  17. Gu W, Shirayama M, Conte D, Vasale J, Batista PJ, Claycomb JM et al (2009) Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 36:231–244. https://doi.org/10.1016/j.molcel.2009.09.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fu H, Tie Y, Xu C, Zhang Z, Zhu J, Shi Y, Jiang H, Sun Z, Zheng X (2005) Identification of human fetal liver miRNAs by a novel method. FEBS Lett 579(17):3849–3854. https://doi.org/10.1016/j.febslet.2005.05.064

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devrim Gozuacik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ozturk, D.G., Kocak, M., Gozuacik, D. (2017). Cloning of Autophagy-Related MicroRNAs. In: Turksen, K. (eds) Autophagy in Differentiation and Tissue Maintenance. Methods in Molecular Biology, vol 1854. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_83

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_83

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8747-4

  • Online ISBN: 978-1-4939-8748-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics