Skip to main content

Advertisement

Log in

Advances in Rotary Ultrasonic-Assisted Machining

  • Review Papers
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

Abstract

Rotary ultrasonic-assisted machining (RUAM) processes have been recognized as leading, non-traditional, high-precision machining processes that have been recently developed to machine a vast range of advanced, hard-to-machine, brittle materials like reinforced composites, ceramics, and metallic alloys to a very high surface finish in an efficient and cost-effective manner. As the field of materials engineering further progresses in search of materials with very high hardness and resistance to wear for use in the biomedical, energy, aerospace, automobile, and optical industries, so too must the machining processes progress in order to fulfill the demand for manufacturing the components. RUAM processes have been shown to reduce cutting forces and improve tool life during machining of very hard and brittle materials so far. Therefore, from the very first implementation of ultrasonic energy for higher-quality machining in the late 1920s to today’s advanced computer numerical control RUAM 5-axis machining centers, this review examines the development history, the working mechanisms, and the critical performance of each RUAM process, which influence the process outputs. The advancements, applications, limitations, and future perspective of RUAM processes are also discussed in detail with the aim of providing clear insight into the future of RUAM, for further development and to extend the range of its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Xiao XZ, Zheng K, Liao WH (2014) Theoretical model for cutting force in rotary ultrasonic milling of dental zirconia ceramics. Int J Adv Manuf Technol 75(9–12):1263–1277

    Article  Google Scholar 

  2. Verma G, Pandey P (2018) Machining forces in ultrasonic-vibration assisted end milling

  3. Maurotto A, Wickramarachchi C (2016) Experimental investigations on effects of frequency in ultrasonically-assisted end-milling of AISI 316L: a feasibility study. Ultrasonics 65:113–120

    Article  Google Scholar 

  4. Maroju NK, Subbu S, Krishna V et al (2014) Vibration assisted conventional and advanced machining: a review. Proc Eng 97:1577–1586

    Article  Google Scholar 

  5. Li Z, Zhang DY, Jiang XG et al (2019) Study on rotary ultrasonic assisted drilling of titanium alloys (Ti6Al4 V) using 8-facet drill under no cooling condition. Int J Adv Manuf Technol 90(9–12):3249–3264

    Google Scholar 

  6. Mandegari M, Behbahani S (2013) Experimental analysis of a novel rotary ultrasonic assisted drilling (RUAD) machine. Mater Manuf Processes 28(4):481–487

    Article  Google Scholar 

  7. Li Z, Zhang D, Qin W et al (2016) Removal analyses of chip and rod in rotary ultrasonic assisted drilling of carbon fiber reinforced plastics using core drill. J Reinf Plast Compos 35(15):1173–1190

    Article  Google Scholar 

  8. Baraheni M, Amini S (2019) Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding. Ceram Int 45(8):10086–10096

    Article  Google Scholar 

  9. Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239–255

    Article  Google Scholar 

  10. Churi NJ (2010) Rotary ultrasonic machining of hard-to-machine materials. Kansas State University

  11. Benedict G (1987) Ultrasonic machining. Non-traditional manufacturing processes, pp 67–86

  12. Gilmore R (1990) Ultrasonic machining of ceramics. SME Paper, volume MS90-346

  13. Rozenberg LD, Kazantsev VF, Makarov LO, et al (1964) Ultrasonic cutting. Consultants Bureau, pp 80–854

  14. Kohls JB (1984) Ultrasonic manufacturing process: ultrasonic machining (USM) and ultrasonic impact grinding (USIG). Carbide Tool J 16(5):12–15

    Google Scholar 

  15. Soundararajan V, Radhakrishnan V (1986) An experimental investigation on the basic mechanisms involved in ultrasonic machining. Int J Mach Tool Des Res 26(3):307–321

    Article  Google Scholar 

  16. Komaraiah M, Manan MA, Narasimha Reddy P et al (1988) Investigation of surface roughness and accuracy in ultrasonic machining. Precis Eng 10(2):59–65

    Article  Google Scholar 

  17. Prabhakar D (1992) Machining advanced ceramic materials using rotary ultrasonic machining process. In: Machining advanced ceramic materials using rotary ultrasonic machining process

  18. Pei ZJ (1995) Rotary ultrasonic machining of ceramics: Characterisation and extensions. In: Rotary ultrasonic machining of ceramics

  19. Pei ZJ, Ferreira PM, Kapoor SG et al (1995) Rotary ultrasonic machining for face milling of ceramics. Int J Mach Tools Manuf 35(7):1033–1046

    Article  Google Scholar 

  20. Khanna N, Pei ZJ, Ferreira PM (1995) An experimental investigation of rotary ultrasonic grinding of ceramics disk. Trans North Am Manuf Res Inst SME 23:67–72

    Google Scholar 

  21. Cleave D (1976) Ultrasonics gets bigger jobs in machining and welding. Iron Age 218:69

    Google Scholar 

  22. Graff KF (1975) Macrosonics in industry. 5. Ultrasonic machining. Ultrasonics 13(3):103–109

    Article  Google Scholar 

  23. Tyrrell WR (1970) Rotary ultrasonic machining. SME Technical Paper

  24. Sharma A, Jain V, Gupta D (2018) Characterization of chipping and tool wear during drilling of float glass using rotary ultrasonic machining. Meas J Int Meas Conf 128:254–263

    Google Scholar 

  25. Jiao Y, Liu WJ, Pei ZJ et al (2005) Study on edge chipping in rotary ultrasonic machining of ceramics: an integration of designed experiments and finite element method analysis. Trans ASME J Manuf Sci Eng 127(4):752–758

    Article  Google Scholar 

  26. Petrukha PG (1970) Ultrasonic diamond drilling of deep holes in brittle materials. Russian Eng J 50(10):70–74

    Google Scholar 

  27. Ghabrial SR (1986) Trends towards improving surfaces produced by modern processes. Wear 109(1–4):113–118

    Article  Google Scholar 

  28. Kumar J (2013) Ultrasonic machining—a comprehensive review. Mach Sci Technol 17(3):325–379

    Article  Google Scholar 

  29. Pei ZJ, Ferreira PM (1999) An experimental investigation of rotary ultrasonic face milling. Int J Mach Tools Manuf 39(8):1327–1344

    Article  Google Scholar 

  30. Churi NJ, Pei ZJ, Treadwell C (2007) Rotary ultrasonic machining of titanium alloy (Ti-6Al-4V): effects of tool variables. Int J Precis Technol 1(1):85–96

    Article  Google Scholar 

  31. Hermawan H, Ramdan D, Djuansjah JRP (2011) Metals for biomedical applications. In: Biomedical engineering—from theory to applications, 2011

  32. Wood RW, Loomis AL (1927) The physical and biological effects of high-frequency sound-waves of great intensity. London Edinburgh Dublin Philos Magaz J Sci 4(22):417–436

    Article  Google Scholar 

  33. Hightower JR (1973) Ultrasonics, the low- and high-intensity applications. AIChE J 19(4):879–880

    Article  Google Scholar 

  34. Neppiras EA (1956) Report on ultrasonic machining. Metalwork Prod 100(29):1283–1288

    Google Scholar 

  35. Scab KHW (1990) Parametric studies of ultrasonic machining. In: SME Tech. Paper, vol. MR90-294

  36. Shaw MC (1956) Ultrasonic grinding. Microtechnic 10(6):257–265

    Google Scholar 

  37. Enomoto Y (1981) Sliding fracture of soda-lime glass in liquid environments. J Mater Sci 16(12):3365–3370

    Article  Google Scholar 

  38. Legge P (1966) Machining without abrasive slurry. Ultrasonics 4(3):157–162

    Article  Google Scholar 

  39. Wachtman JB (2009) Materials and equipment—whitewares manufacturing. Wiley

  40. Markov AI (1977) Ultrasonic drilling and milling of hard non-metallic materials with diamond tools, pp 45–47

  41. Kuo K, Tsao C (2012) Rotary ultrasonic assisted milling of brittle materials. Trans Nonferrous Metals Soc China 22:s793–s800

    Article  Google Scholar 

  42. Spur G, Holl SE (1996) Ultrasonic assisted grinding of ceramics. J Mater Process Technol 62(4):287–293

    Article  Google Scholar 

  43. Pei ZJ, Prabhakar D, Ferreira PM et al (1995) Rotary ultrasonic drilling and milling of ceramics. Ceram Trans 49(10):185–196

    Google Scholar 

  44. Ya G, Qin HW, Yang SC et al (2002) Analysis of the rotary ultrasonic machining mechanism. J Mater Process Technol 129(1–3):182–185

    Article  Google Scholar 

  45. Ning FD, Cong WL, Pei ZJ et al (2016) Rotary ultrasonic machining of carbon fiber reinforced plastics: a comparison with grinding. Ultrasonics 66:125–132

    Article  Google Scholar 

  46. Neugebauer R, Stoll A (2004) Ultrasonic application in drilling. J Mater Process Technol Conf Pap 149(1–3):633–639

    Article  Google Scholar 

  47. Gong H, Fang FZ, Hu XT (2010) Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials. Int J Mach Tools Manuf 50(3):303–307

    Article  Google Scholar 

  48. Qin N, Pei ZJ, Treadwell C et al (2009) Physics based predictive cutting force model in ultrasonic vibration assisted grinding for titanium drilling. Trans ASME J Manuf Sci Eng 131(4):0410111–0410119

    Article  Google Scholar 

  49. Zhou M, Wang M, Dong G (2016) Experimental investigation on rotary ultrasonic face grinding of SiCp/Al composites. Mater Manuf Processes 31(5):673–678

    Article  Google Scholar 

  50. Jain AK, Pandey PM (2017) Experimental investigations of ceramic machining using µ-grinding and µ-rotary ultrasonic machining processes: a comparative study. Mater Manuf Processes 32(6):598–607

    Article  Google Scholar 

  51. Wang HMS, Lin LY (1993) Improvement of rotary ultrasonic deep hole drilling of glass ceramics—Zerodur. In: Seminar of the 7th international precision engineering, pp 18–31

  52. Lv D, Zhang Y, Peng Y (2016) High-frequency vibration effects on hole entrance chipping in rotary ultrasonic drilling of BK7 glass. Ultrasonics 72:47–56

    Article  Google Scholar 

  53. Wang J, Zha H, Feng P et al (2016) On the mechanism of edge chipping reduction in rotary ultrasonic drilling: a novel experimental method. Precis Eng 44:231–235

    Article  Google Scholar 

  54. Amini S, Soleimani M, Paktinat H et al (2017) Effect of longitudinal–torsional vibration in ultrasonic-assisted drilling. Mater Manuf Processes 32(6):616–622

    Article  Google Scholar 

  55. Feng P, Wang J, Zhang J et al (2017) Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites. Ceram Int 43(1):791–799

    Article  Google Scholar 

  56. Benedict G (2017) Nontraditional manufacturing processes. Routledge

  57. Wang Y, Gong H, Fang FZ et al (2016) Kinematic view of the cutting mechanism of rotary ultrasonic machining by using spiral cutting tools. Int J Adv Manuf Technol 83(1–4):461–474

    Article  Google Scholar 

  58. Kremer D (1991) New developments on ultrasonic machining. Soc Manuf Eng

  59. Cong WL, Pei ZJ, Treadwell C (2014) Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks. Ultrasonics 54(6):1594–1602

    Article  Google Scholar 

  60. Sreejith PS, Ngoi BKA (2000) Dry machining: machining of the future. J Mater Process Technol 101(1):287–291

    Article  Google Scholar 

  61. Klocke F, Eisenblätter G (1997) Dry cutting. CIRP Ann 46(2):519–526

    Article  Google Scholar 

  62. Arumugam P, Malshe A, Batzer S (2006) Dry machining of aluminum–silicon alloy using polished CVD diamond-coated cutting tools inserts. Surf Coat Technol 200(11):3399–3403

    Article  Google Scholar 

  63. Cong WL, Feng Q, Pei ZJ et al (2012) Rotary ultrasonic machining of carbon fiber reinforced plastic composites: using cutting fluid vs. cold air as coolant. J Compos Mater 46(14):1745–1753

    Article  Google Scholar 

  64. Wang Z, Gong H, Fang FZ et al (2016) Recognition of wear condition of micro milling tool based on length fractal dimension. J Vib Meas Diagn 36(3):592–597

    Google Scholar 

  65. Jain AK, Pandey PM, Narasaiah K et al (2018) Effect of tool design parameters study in micro rotary ultrasonic machining process. Int J Adv Manuf Technol 98(5):1267–1285

    Article  Google Scholar 

  66. Cardoso P, Davim JP (2012) A brief review on micromachining of materials. Rev Adv Mater Sci 30(1):98–102

    Google Scholar 

  67. Piljek P, Keran Z, Math M (2014) Micromachining—review of literature from 1980 to 2010. Interdiscip Descr Compl Syst 12(1):1–27

    Article  Google Scholar 

  68. Zhang X, Arif M, Liu K et al (2013) A model to predict the critical undeformed chip thickness in vibration-assisted machining of brittle materials. Int J Mach Tools Manuf 69:57–66

    Article  Google Scholar 

  69. Hu P, Zhang JM, Pei ZJ et al (2002) Modeling of material removal rate in rotary ultrasonic machining: designed experiments. Conf Pap 129(1–3):339–344

    Google Scholar 

  70. Sarwade A (2010) Study of micro rotary ultrasonic machining

  71. Qin N (2011)Modeling and experimental investigation on ultrasonic vibration assisted grinding. Kansas State University

  72. Liu LP, Lin B, Fang FZ (2011) Study on a novel adaptive force control table employed for rotary ultrasonic drilling. Appl Mech Mater 80:1027–1031

    Article  Google Scholar 

  73. Lv D, Jian Tang Y, Hua Huang Y et al (2013) Effects of high frequency vibration on the surface quality in rotary ultrasonic machining of glass BK7. Appl Mech Mater 427–429:187–190

    Article  Google Scholar 

  74. Liu JW, Baek DK, Ko TJ (2014) Chipping minimization in drilling ceramic materials with rotary ultrasonic machining. Int J Adv Manuf Technol 72(9):1527–1535

    Article  Google Scholar 

  75. Cook NH (1966) Manufacturing analysis. Addison-Wesley Pub., Co, Reading

    Google Scholar 

  76. Miller GE (1957) Special theory of ultrasonic machining. J Appl Phys 28(2):149–156

    Article  Google Scholar 

  77. Kainth GS, Nandy A, Singh K (1979) On the mechanics of material removal in ultrasonic machining. Int J Mach Tool Des Res 19(1):33–41

    Article  Google Scholar 

  78. Chao CL, Chou WC, Chao CW et al (2007) Material removal mechanisms involved in rotary ultrasonic machining of brittle materials. Key Eng Mater 329:391–396

    Article  Google Scholar 

  79. Liu S, Chen T, Wu C (2017) Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP): a study on cutting force model. Int J Adv Manuf Technol 89(1):847–856

    Article  Google Scholar 

  80. Pei ZJ, Ferreira PM, Haselkorn M (1995) Plastic flow in rotary ultrasonic machining of ceramics. J Mater Process Tech 48(1–4):771–777

    Article  Google Scholar 

  81. Rice RW, Bersch CF, Diness AM (1970) Science and the machining and surface finishing of ceramics. In: The science of ceramic machining and surface finishing, pp 1–3

  82. Pei ZJ, Ferreira PM (1998) Modeling of ductile-mode material removal in rotary ultrasonic machining. Int J Mach Tools Manuf 38(10–11):1399–1418 (in English)

    Article  Google Scholar 

  83. Cong WL, Pei ZJ, Van Vleet EG, et al (2009) Surface roughness in rotary ultrasonic machining of stainless steels. In: Proceedings of IIE annual conference, institute of industrial and systems engineers (IISE), 2009, p 1477

  84. Kumar J, Khamba JS (2010) Modeling the material removal rate in ultrasonic machining of titanium using dimensional analysis. Int J Adv Manuf Technol 48(1):103–119

    Article  Google Scholar 

  85. Ahmed Y, Cong WL, Stanco MR, et al (2012) Rotary ultrasonic machining of alumina dental ceramics: a preliminary experimental study on surface and subsurface damages. J Manuf Sci Eng, Trans ASME 134(6)

  86. Li ZC, Jiao Y, Deines TW et al (2005) Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments. Int J Mach Tools Manuf 45(12–13):1402–1411

    Article  Google Scholar 

  87. Singh RP, Singhal S (2018) An experimental study on rotary ultrasonic machining of Macor ceramic. Proc Inst Mech Eng B-J Eng Manuf 232(7):1221–1234

    Article  Google Scholar 

  88. Jain AK, Pandey PM (2017) Modeling of un-deformed chip thickness in RUM process and study of size effects in μ-RUM. Ultrasonics 77:1–16

    Article  Google Scholar 

  89. Kumar V, Singh H (2018) Regression analysis of surface roughness and micro-structural study in rotary ultrasonic drilling of BK7. Ceram Int 44(14):16819–16827

    Article  Google Scholar 

  90. Prabhakar D, Pei ZJ, Ferreira PM et al (1993) A theoretical model for predicting material removal rates in rotary ultrasonic machining of ceramics. Trans North Am Manuf Res Inst SME 21(21):167–172

    Google Scholar 

  91. Pei ZJ, Prabhakar D, Ferreira PM et al (1995) Mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. J Eng Ind 117(2):142–151

    Article  Google Scholar 

  92. Liu J, Jiang X, Han X et al (2018) Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti–6Al–4 V. Int J Adv Manuf Technol 101:1451–1465

    Article  Google Scholar 

  93. Liu J, Jiang X, Han X et al (2019) Influence of parameter matching on performance of high-speed rotary ultrasonic elliptical vibration-assisted machining for side milling of titanium alloys. Int J Adv Manuf Technol 101(5):1333–1348

    Article  Google Scholar 

  94. Prabhakar D, Ferreira PM, Haselkorn M (1992) An experimental investigation of material removal rates in rotary ultrasonic machining. Trans North Am Manuf Res Inst SME 20:211–218

    Google Scholar 

  95. Ning F, Wang H, Cong W et al (2017) A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. Ultrasonics 76:44–51

    Article  Google Scholar 

  96. Liu DF, Cong WL, Pei ZJ et al (2012) A cutting force model for rotary ultrasonic machining of brittle materials. Int J Mach Tools Manuf 52(1):77–84 (in English)

    Article  Google Scholar 

  97. Zhang C, Zhang J, Feng P (2013) Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials. Int J Adv Manuf Technol 69(1):161–170

    Article  Google Scholar 

  98. Cong WL, Pei ZJ, Sun X et al (2014) Rotary ultrasonic machining of carbon fiber reinforced plastics: a mechanistic predictive model for cutting force. Ultrasonics 54(2):663–675

    Article  Google Scholar 

  99. Amin M, Yuan S, Khan M et al (2017) Development of a generalized cutting force prediction model for carbon fiber reinforced polymers based on rotary ultrasonic face milling. Int J Adv Manuf Technol 93(5):2655–2666

    Article  Google Scholar 

  100. Yuan S, Zhang C, Hu J (2015) Effects of cutting parameters on ductile material removal mode percentage in rotary ultrasonic face machining. Proc Inst Mech Eng B: J Eng Manuf 229(9):1547–1556

    Article  Google Scholar 

  101. Zhao CY, Gong H, Fang FZ et al (2013) Experimental study on the cutting force difference between rotary ultrasonic machining and conventional diamond grinding of K9 glass. Mach Sci Technol 17(1):129–144

    Article  Google Scholar 

  102. Wang J, Zhang J, Feng P et al (2018) Feasibility study of longitudinal torsional coupled rotary ultrasonic machining of brittle material. J Manuf Sci Eng 140(5):051008-051008-11

    Article  Google Scholar 

  103. Wang J, Zhang J, Feng P et al (2017) Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: a critical review. Ceram Int 44(2):1227–1239

    Article  Google Scholar 

  104. Jian-Hua Z, Yan Z, Fu-Qiang T et al (2015) Kinematics and experimental study on ultrasonic vibration-assisted micro end grinding of silica glass. Int J Adv Manuf Technol 78(9–12):1893–1904

    Article  Google Scholar 

  105. Wang J, Zhang C, Feng P et al (2016) A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass. Int J Adv Manuf Technol 83(1–4):347–355

    Article  Google Scholar 

  106. Ng SJ, Le DT, Tucker SR, et al (1996) Control of machining induces edge chipping on glass ceramics

  107. Wang J, Feng P, Zhang J (2016) Reduction of edge chipping in rotary ultrasonic machining by using step drill: a feasibility study. Int J Adv Manuf Technol 87(9–12):2809–2819

    Article  Google Scholar 

  108. Wan J, Feng P, Zhang J (2016) Investigations on the edge-chipping reduction in rotary ultrasonic machining using a conical drill. Proc Inst Mech Eng B: J Eng Manuf 230(7):1254–1263

    Article  Google Scholar 

  109. Wang JJ, Peng PF, Zhang JF (2018) Reducing edge chipping defect in rotary ultrasonic machining of optical glass by compound step-taper tool. J Manuf Processes 32:213–221

    Article  Google Scholar 

  110. Gong H, Fang FZ, Zhang XF et al (2013) Study on the reduction strategy of machining induced edge chipping based on finite element analysis of in-process workpiece structure. J Manuf Sci Eng 135(1):011017-011017-10

    Article  Google Scholar 

  111. Lv D, Tang Y, Wang H et al (2013) Experimental investigations on subsurface damage in rotary ultrasonic machining of glass BK7. Mach Sci Technol 17(3):443–463

    Article  Google Scholar 

  112. Tesfay HD, Xu Z, Li ZC (2016) Ultrasonic vibration assisted grinding of bio-ceramic materials: an experimental study on edge chippings with Hertzian indentation tests. Int J Adv Manuf Technol 86(9):3483–3494

    Article  Google Scholar 

  113. Qu W, Wang K, Miller MH et al (2000) Using vibration assisted grinding to reduce subsurface damage. Precis Eng 24(4):329–337

    Article  Google Scholar 

  114. Lv D, Huang Y, Wang H et al (2013) Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass. J Mater Process Technol 213(9):1548–1557

    Article  Google Scholar 

  115. Lv D (2016) Influences of high-frequency vibration on tool wear in rotary ultrasonic machining of glass BK7. Int J Adv Manuf Technol 84(5):1443–1455

    Article  Google Scholar 

  116. Churi NJ, Pei ZJ, Treadwell C (2006) Rotary ultrasonic machining of titanium alloy: effects of machining variables. Mach Sci Technol 10(3):301–321

    Article  Google Scholar 

  117. Jiao Y, Hu P, Pei ZJ et al (2005) Rotary ultrasonic machining of ceramics: design of experiments. Int J Manuf Technol Manag 7(2–4):192–206

    Article  Google Scholar 

  118. Cong WL, Pei ZJ, Feng Q et al (2012) Rotary ultrasonic machining of carbon fiber reinforced plastics: a comparison with twist drilling. J Reinf Plast Compos 31(5):313–321

    Article  Google Scholar 

  119. Bertsche E, Ehmann K, Malukhin K (2013) Ultrasonic slot machining of a silicon carbide matrix composite. Int J Adv Manuf Technol 66(5):1119–1134

    Article  Google Scholar 

  120. Ya G, Qin HW, Xu YW, et al (2001) An experimental investigation on rotary ultrasonic machining. In: Key engineering materials, 2001, pp 277–280

  121. Wang J, Feng P, Zhang J et al (2017) Investigations on the critical feed rate guaranteeing the effectiveness of rotary ultrasonic machining. Ultrasonics 74:81–88

    Article  Google Scholar 

  122. Astashev V, Babitsky V (2007) Ultrasonic processes and machines: dynamics, control and applications. Springer Science & Business Media, New York

    MATH  Google Scholar 

  123. Zhao C, Gong H, Fang FZ (2012) Experimental investigation on the surface quality in rotary ultrasonic grinding of cemented carbide. Mech Sci Technol Aerosp Eng 31(10):1584–1587

    Google Scholar 

  124. Thirumalai-Kumaran S, Ko TJ, Li C et al (2017) Rotary ultrasonic machining of woven carbon fiber reinforced plastics composite in a cryogenic environment. J Alloy Compd 698:984–993

    Article  Google Scholar 

  125. Wang H, Ning F, Hu Y et al (2018) Edge trimming of carbon fiber-reinforced plastic composites using rotary ultrasonic machining: effects of tool orientations. Int J Adv Manuf Technol 98(5):1641–1653

    Article  Google Scholar 

  126. Lv D, Wang H, Tang Y et al (2013) Influences of vibration on surface formation in rotary ultrasonic machining of glass BK7. Precis Eng 37(4):839–848

    Article  Google Scholar 

  127. Ni C, Zhu L, Yang Z (2019) Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from dynamic view. Wear 436–437:203006

    Article  Google Scholar 

  128. Zeng WM, Li ZC, Pei ZJ et al (2005) Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. Int J Mach Tools Manuf 45(12–13):1468–1473

    Article  Google Scholar 

  129. Zhang CL, Feng PF, Wu ZJ et al (2011) An experimental study on processing performance of rotary ultrasonic drilling of K9 glass. Adv Mater Res 230:221–225

    Article  Google Scholar 

  130. Zhang CL, Feng PF, Zhang JF et al (2012) Theoretical and experimental research on the features of cutting force in rotary ultrasonic face milling of K9 glass. Appl Mech Mater 157:1674–1679

    Google Scholar 

  131. Churi NJ, Li ZC, Pei ZJ, et al (2005) Rotary ultrasonic machining of titanium alloy: a feasibility study. In: Manufacturing engineering and materials handling, 2005 Pts A and B, pp 885–892

  132. Churi NJ, Pei ZJ, Treadwell C, et al (2008) Wheel wear mechanisms in rotary ultrasonic machining of titanium. In: Proceedings of the ASME international mechanical engineering congress and exposition 2007, vol 3: design and manufacturing, pp 399–407

  133. Li Z, Yuan SM, Zhang C (216) Research on the rotary ultrasonic facing milling of ceramic matrix composites. In: Li Y, Gao J, Maropoulos P (eds) 9th international conference on digital enterprise technology—intelligent manufacturing in the knowledge economy era, vol 56 (Procedia CIRP, 2016), pp 428–433

  134. Li ZC, Jiao Y, Deines TW, et al (2005) Experimental investigation into rotary ultrasonic machining of ceramic matrix composites. In: High temperature ceramic matrix composites vol 5, pp 463–468

  135. Wang J, Feng P, Zhang J et al (2018) Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinal-torsional coupled vibration. Manuf Lett 18:1–5

    Article  Google Scholar 

  136. Wang JJ, Feng PF, Zhang JF et al (2018) Experimental study on vibration stability in rotary ultrasonic machining of ceramic matrix composites: cutting force variation at hole entrance. Ceram Int 44(12):14386–14392

    Article  Google Scholar 

  137. Wang JJ, Feng PF, Zheng JZ et al (2016) Improving hole exit quality in rotary ultrasonic machining of ceramic matrix composites using a compound step-taper drill. Ceram Int 42(12):13387–13394

    Article  Google Scholar 

  138. Wang JJ, Zhang JF, Feng PF (2017) Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites. Composit B Eng 129:233–242

    Article  Google Scholar 

  139. Wang JJ, Zhang QL, Feng PF (2017) Preliminary investigation on rotary ultrasonic face milling of ceramic matrix composite c/sic: design of experiments. In: Ke J, Xiao J, Davis H, (eds) Proceedings of the 2017 international conference on mechanical, electronic, control and automation engineering. AER-Advances in Engineering Research, vol 61, pp 375–378

  140. Yuan SM, Fan HT, Amin M et al (2016) A cutting force prediction dynamic model for side milling of ceramic matrix composites C/SiC based on rotary ultrasonic machining. Int J Adv Manuf Technol 86(1–4):37–48

    Article  Google Scholar 

  141. Lv D, Huang Y, Tang Y et al (2013) Relationship between subsurface damage and surface roughness of glass BK7 in rotary ultrasonic machining and conventional grinding processes. Int J Adv Manuf Technol 67(1):613–622

    Article  Google Scholar 

  142. Song XF, Yang JJ, Ren HT et al (2018) Ultrasonic assisted high rotational speed diamond machining of dental glass ceramics. Int J Adv Manuf Technol 96(1–4):387–399

    Google Scholar 

  143. Singh RP, Singhal S (2016) Rotary ultrasonic machining: a review. Mater Manuf Process Rev 31(14):1795–1824

    Article  Google Scholar 

  144. Cong WL, Feng Q, Pei ZJ, et al (2011) Comparison of superabrasive tools in rotary ultrasonic machining of stainless steel. In: Proceedings of the ASME international manufacturing science and engineering conference 2010, vol 1, pp. 113–119

  145. Azlan R, Izamshah R, Hadzley M, et al (2016) Surface evaluation of rotary ultrasonic assisted machining technique for hardened steel material. In: Proceedings of international conference on advanced processes and systems in manufacturing, pp 11–12

  146. Tong L, Mouritz AP, Bannister M (2002) 3D fibre reinforced polymer composites. Elsevier

  147. Boeing C (2006) Boeing 787 from the ground up. http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_2.html

  148. Ramulu M, Branson T, Kim D (2001) A study on the drilling of composite and titanium stacks. Compos Struct 54(1):67–77

    Article  Google Scholar 

  149. Jain S, Yang DC (1993) Effects of feedrate and chisel edge on delamination in composites drilling. J Eng Ind 115(4):398–405

    Article  Google Scholar 

  150. Ho-Cheng H, Dharan C (1990) Delamination during drilling in composite laminates. J Eng Ind 112(3):236–239

    Article  Google Scholar 

  151. Boeing C (2014) Not your mother’s ceramics. Available: http://www.boeing.com/features/2014/09/corp-ceramic-nozzle-09-05-14.page

  152. Zhang C, Yuan SM, Amin M et al (2016) Development of a cutting force prediction model based on brittle fracture for C/SiC in rotary ultrasonic facing milling. Int J Adv Manuf Technol 85(1–4):573–583

    Google Scholar 

  153. Fang FZ, Ni H, Gong H (2014) Rotary ultrasonic machining of hard and brittle materials. Nanotechnol Precis Eng 12:227–234

    Google Scholar 

  154. Lv DX, Wang HX, Zhang WW et al (2016) Subsurface damage depth and distribution in rotary ultrasonic machining and conventional grinding of glass BK7. Int J Adv Manuf Technol 86(9–12):2361–2371

    Article  Google Scholar 

  155. Fang FZ, Zhang GX (2004) An experimental study of optical glass machining. Int J Adv Manuf Technol 23(3):155–160

    Article  Google Scholar 

  156. Wang HX, Wang C, Liu JL et al (2017) Analysis of surface and subsurface damage morphology in rotary ultrasonic machining of BK7 glass. In: 2017 4th International conference on advanced materials, mechanics and structural engineering, vol 269 (IOP conference series-materials science and engineering, 2017)

  157. Cong WL, Zou XT, Deines TW et al (2012) Rotary ultrasonic machining of carbon fiber reinforced plastic composites: an experimental study on cutting temperature. J Reinf Plast Compos 31(22):1516–1525

    Article  Google Scholar 

  158. Geng DX, Lu ZH, Yao G et al (2017) Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP. Int J Mach Tools Manuf 123:160–170

    Article  Google Scholar 

  159. Liu LP, Lin B, Fang FZ (2011) Monitoring of tool wear in rotary ultrasonic machining of advanced ceramics. In: Gao J (ed) Advanced manufacturing technology, Pts 1–3, Advanced Materials Research, 2011. vol 314–316, pp 1754

  160. Popli DD, Gupta M (2017) Experimental investigation of tool wear and machining rate in rotary ultrasonic machining of nickel alloy. Mach Sci Technol 32:1–27

    Google Scholar 

  161. Uddeholm C (2013) Stavax ESR. https://www.uddeholm.com/files/PB_Uddeholm_stavax_esr_english.pdf

  162. Wu H, Li D, Tang Y et al (2009) Rapid fabrication of alumina-based ceramic cores for gas turbine blades by stereolithography and gelcasting. J Mater Process Technol 209(18):5886–5891

    Article  Google Scholar 

  163. Li B, Mandelis A, Kish ZZ (2004) Photothermal investigation of the thermal shock behavior of alumina ceramics for engine components. J Appl Phys 95(3):1042–1049

    Article  Google Scholar 

  164. Affatato S, Torrecillas R, Taddei P et al (2006) Advanced nanocomposite materials for orthopaedic applications. I. A long-term in vitro wear study of zirconia-toughened alumina. J Biomed Mater Res B Appl Biomater 78B(1):76–82

    Article  Google Scholar 

  165. Mandal N, Doloi B, Mondal B et al (2011) Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and regression analysis. Measurement 44(10):2149–2155

    Article  Google Scholar 

  166. Saptaji K, Gebremariam MA, Azhari MABM (2018) Machining of biocompatible materials: a review. Int J Adv Manuf Technol 97(5):2255–2292

    Article  Google Scholar 

  167. Singh R, Khamba JS (2006) Ultrasonic machining of titanium and its alloys: a review. J Mater Process Technol 173(2):125–135

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research & Development Program (Grant No. 2016YFB1102200), Science Foundation Ireland (No. 15/RP/B3208) and the “111” Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (Grant No. B07014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengzhou Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Toole, L., Kang, C. & Fang, F. Advances in Rotary Ultrasonic-Assisted Machining. Nanomanuf Metrol 3, 1–25 (2020). https://doi.org/10.1007/s41871-019-00053-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-019-00053-3

Keywords

Navigation