Skip to main content
Log in

Two-step preparation and characterization of ZnO Core–Si shell coaxial nanorods

  • Research
  • Published:
Journal of Theoretical and Applied Physics

Abstract

This study compares and analyzes the key characteristics of the ZnO core–Si shell coaxial nanorod (Si@ZnO NR) heterostructures that were grown on semi-insulating, (100)-oriented Si substrates at Si layer temperatures of 450, 500, 550 and 600 °C for optoelectronic device applications. The Si@ZnO NRs were prepared in two separate stages. Vapor-phase transport produced the ZnO NRs, whereas rapid thermal chemical vapor deposition formed the Si layers. Results obtained from X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Raman tests indicate that the ZnO NRs were single crystals with a zincblende configuration. The findings also reveal that the Si layer was polycrystalline in nature, poly-Si, with a würtzite configuration. The present research is beneficial to the optoelectronic devices such as light-emitting diodes, solar cells and photodetectors in the UV–infrared range using the Si@ZnO coaxial nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hsueh, H.T., Chang, S.J., Weng, W.Y., Hsu, C.L., Hsueh, T.J., Hung, F.Y., Wu, S.L., Dai, B.T.: Fabrication and characterization of coaxial p-copper oxide/n-ZnO nanowire photodiodes. IEEE Trans. Nanotechnol. 11(1), 127–133 (2012)

    Article  ADS  Google Scholar 

  2. Ko, Y., Nagaraju, G., Yu, J.S.: Wire-shaped ultraviolet photodetectors based on a nanostructured NiO/ZnO coaxial p–n heterojunction via thermal oxidation and hydrothermal growth processes. Nanoscale 7(6), 2735–2742 (2015)

    Article  ADS  Google Scholar 

  3. Wu, J., Chen, W., Chang, Y.H., Chen, Y.F., Hang, D., Liang, C., Lu, J.: Fabrication and photoresponse of ZnO nanowires/CuO coaxial heterojunction. Nanoscale Res. Lett. 8(1), 1–5 (2013)

    Article  ADS  Google Scholar 

  4. Panigrahi, S., Basak, D.: Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection. Nanoscale 3(5), 2336–2341 (2011)

    Article  ADS  Google Scholar 

  5. An, S.J., Park, W.I., Yi, G.C., Kim, Y.J., Kang, H.B., Kim, M.Y.: Heteroepitaxal fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures. Appl. Phys. Lett. 84(18), 3612 (2004)

    Article  ADS  Google Scholar 

  6. Hong, Y.J., Jeon, J.M., Kim, M., Jeon, S.R., Park, K.H., Yi, G.C.: Structural and optical characteristics of GaN/ZnO coaxial nanotube heterostructure arrays for light-emitting device applications. New J. Phys. 11, 125021 (2009)

    Article  ADS  Google Scholar 

  7. Park, W.I., Yoo, J.K., Kim, D.W., Yi, G.C., Kim, M.: Fabrication and photoluminescent properties of heteroepitaxial ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures. J. Phys. Chem. B 110(4), 1516–1519 (2006)

    Article  Google Scholar 

  8. Park, W.I., Yi, G.C., Lim, M.Y., Pennycook, S.J.: Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures. Adv. Mater. 15(6), 526–529 (2003)

    Article  Google Scholar 

  9. Meng, X.Q., Peng, H., Gai, Y.Q., Li, J.: Influence of ZnS and MgO shell on the photoluminescence properties of ZnO core/shell nanowires. J. Phys. Chem. C 114(3), 1467–1471 (2010)

    Article  Google Scholar 

  10. Peng, K.Q., Wang, X., Wu, X.L., Lee, S.T.: Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett. 9, 3704–3709 (2009)

    Article  ADS  Google Scholar 

  11. Cui, Y., Wei, Q.Q., Park, H.K., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)

    Article  ADS  Google Scholar 

  12. He, R.R., Yang, P.D.: Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42–46 (2006)

    Article  ADS  Google Scholar 

  13. Huang, Y., Duan, X.F., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)

    Article  ADS  Google Scholar 

  14. Jie, J.S., Zhang, W.J., Peng, K.Q., Yuan, G.D., Lee, C.S., Lee, S.T.: Surface-dominated transport properties of silicon nanowires. Adv. Funct. Mater. 18(20), 3251–3257 (2008)

    Article  Google Scholar 

  15. Zhang, X., Zhang, X., Zhang, X., Zhang, Y., Bian, L., Wu, Y., Xie, C., Han, Y., Wang, Y., Gao, P., Wang, L., Jie, J.: ZnSe nanoribbon/Si nanowire p–n heterojunction arrays and their photovoltaic application with graphene transparent electrodes. J. Mater. Chem. 22(43), 22873–22880 (2012)

    Article  Google Scholar 

  16. Ma, D., Lee, C.S., Au, F.C., Tong, S.Y., Lee, S.T.: Small-diameter silicon nanowire surfaces. Science 299(5614), l874-1877 (2003)

    Article  Google Scholar 

  17. Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C.M.: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 6l–65 (2004)

    Google Scholar 

  18. Wu, Y., Fan, R., Yang, P.D.: Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2(2), 83–86 (2002)

    Article  ADS  Google Scholar 

  19. Wang, C., Wang, J., Li, Q., Yi, G.C.: ZnSe–Si Bi-coaxial nanowire heterostructures. Adv. Funct. Mater. 15(9), 1471–1477 (2005)

    Article  Google Scholar 

  20. Song, H.S., Zhang, W.J., Cheng, C., Tang, Y.B., Luo, L.B., Chen, X., Luan, C.Y., Meng, X.M., Zapien, J.A., Wang, N., Lee, C.S., Bello, L., Lee, S.T.: Controllable fabrication of three-dimensional radial ZnO nanowire/silicon microrod hybrid architectures. Cryst. Growth Des. 11(1), 147–153 (2011)

    Article  Google Scholar 

  21. Gad, A.E., Hoffmann, M.W.G., Hernandez-Ramirez, F., Prades, J.D., Shen, H., Mathur, S.: Coaxial p-Si/n-ZnO nanowire heterostructures for energy and sensing applications. Mater. Chem. Phys. 135(2–3), 618–622 (2012a)

    Article  Google Scholar 

  22. Gad, A.E., Hoffmann, M.W.G., Hernandez-Ramirez, F., Prades, J.D., Shen, H., Mathur, S.: Coaxial n-ZnO/p-Si nanowire heterostructures for energy and sensing applications. Procedia Eng. 47, 1279–1280 (2012b)

    Article  Google Scholar 

  23. Cho, H.D., Cho, H.Y., Kwak, D.W., Kang, T.W., Yoon, I.T.: Synthesis and characterization of Si/ZnO coaxial nanorod heterostructure on (100) Si substrate. J. Cryst. Growth 437, 26–31 (2016)

    Article  ADS  Google Scholar 

  24. Yoon, I.T., Cho, H.D., Cho, H.Y., Kwak, D.W., Lee, S.J.: Effect of Si growth temperature on fabrication of Si-ZnO coaxial nanorod heterostructure on (100) Si substrate. Electron. Mater. 46(7), 4119–4125 (2017)

    Article  ADS  Google Scholar 

  25. Ahsanulhaq, Q., Kim, S.H., Hahn, Y.B.: Hexagonally patterned selective growth of well-aligned ZnO nanorod arrays. J. Alloys Compd. 484(1–2), 17 (2009)

    Article  Google Scholar 

  26. Chen, C.W., Chen, K.H., Shen, C.H., Ganguly, A., Chen, L.C., Wu, J.J., Wen, H.I., Pong, W.F.: Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime. Appl. Phys. Lett. 88(24), 241905 (2006)

    Article  ADS  Google Scholar 

  27. Lupan, O., Chow, L., Chai, G., Chernyak, L., Lopatiuk-Tirpak, O., Heinrich, H.: Focused-ion-beam fabrication of ZnO nanorod-based UV photodetector using the in-situ lift-out technique. Phys. Stat. Sol. (a) 205(11), 2673 (2008)

    Article  ADS  Google Scholar 

  28. Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doǧan, S., Avrutin, V., Cho, S.J., Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005)

    Article  ADS  Google Scholar 

  29. Alim, K.A., Fonoberov, V.A., Shamsa, M., Balandin, A.: Micro-Raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys. 97(12), 124313 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (NRF-2016R1D1A1B03930992), (NRF-2016R1A6A1A03012877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Im Taek Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, I.T., Cho, H.D. Two-step preparation and characterization of ZnO Core–Si shell coaxial nanorods. J Theor Appl Phys 14 (Suppl 1), 9–16 (2020). https://doi.org/10.1007/s40094-020-00398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40094-020-00398-x

Keywords

Navigation