1 Introduction, definitions and motivation

Let \(f(t)\in L_{r}[0,2\pi ]\) be \(2\pi \)-periodic. We have the Fourier series of f at \(t=x\) be given by

$$\begin{aligned} \displaystyle \sum _{n=0}^{\infty } u_{n}(x)=\frac{1}{2}a_{0}+\displaystyle \sum _{n=1}^{\infty }(a_{n}\cos nx+b_{n}\sin nx) \end{aligned}$$
(1.1)

with its partial sum

$$\begin{aligned} S_{n}(f;x)=\frac{1}{\pi }\int _{-\pi }^{\pi }f(x+t)D_{n}(t)dt, \end{aligned}$$

where

$$\begin{aligned} D_{n}(t)=\frac{sin(n+\frac{1}{2})t}{2sin\frac{t}{2}}. \end{aligned}$$

By simple calculation (see [7, p. 50]),

$$\begin{aligned} S_{n}(f;x)-f(x)=\frac{2}{\pi }\int _{0}^{\pi }\phi _{x}(t)\frac{sin(n+\frac{1}{2})t}{2sin\frac{t}{2}}dt, \end{aligned}$$
(1.2)

where

$$\begin{aligned} \phi _{x}(t)=\frac{1}{2}\{f(x+t)+f(x-t)-2f(x)\}. \end{aligned}$$

Let \(C_{2\pi }\) denote the Banach space of all \(2\pi \)-periodic continuous functions defined on \([0,2\pi ]\) under the supremum norm. The space \(L_{r}[0, 2\pi ]\)  \((r=\infty )\) reduces to \(C_{2\pi }\) defined over \([0,2\pi ]\). We write

$$\begin{aligned} \Vert f\Vert _{c}= & {} \sup _{0 \le t \le 2\pi }|f(t)|~~(r=\infty );\\ \Vert f\Vert _{r}= & {} \left( \int _{0}^{2\pi }|f(t)|^{r}dt\right) ^{\frac{1}{r}}~~(r\ge 1);\\ \omega (\delta ;f)= & {} \sup _{0\le |h|\le \delta }\Vert f(x+h)-f(x)\Vert _{c}~~(f\in C_{2\pi });\\ \omega _{r}(\delta ;f)= & {} \sup _{0\le |h|\le \delta }\Vert f(x+h)-f(x)\Vert _{r},~~(f\in L_{r}[0,2\pi ])~(r\ge 1). \end{aligned}$$

The quantities \(\omega (\delta ;f)\) and \(\omega _{r}(\delta ;f)\) are called the modulus of continuity and integral modulus of continuity of f respectively. It is known ([7, p. 45]) that \(\omega (\delta ;f)\) and \(\omega _{r}(\delta ;f)\) both tend to zero as \(\delta \rightarrow 0\).

For \((0<\alpha \le 1)\)\((\delta >0)\) and let \(H_{\alpha }\) be defined by

$$\begin{aligned} H_{\alpha }=\{f\in C_{2\pi }:\omega (\delta ;f)=O(\delta ^{\alpha })\}. \end{aligned}$$
(1.3)

It is known that \(H_{\alpha }\) is a Banach space with norm,

$$\begin{aligned} \Vert f\Vert _{\alpha }=\Vert f\Vert _{c}+\sup (\delta ^{-\alpha }\omega (\delta ))~~(0<\alpha \le 1)~~(\delta >0) \end{aligned}$$
(1.4)

and

$$\begin{aligned} H_{\alpha }\subseteq H_{\gamma }\subseteq C_{_{2\pi }},~~(0\le \gamma <\alpha \le 1). \end{aligned}$$

The metric induced by the norm \(\Vert .\Vert _{\alpha }\) on \(\Vert H\Vert _{\alpha }\) is called the Hölder metric. Further, Leindler [5] generalized the Hölder metric \(\Vert H\Vert _{\alpha }\) to obtain a space \(\Vert H\Vert ^{\omega }\),

$$\begin{aligned} H^{\omega }=\{f\in C_{2\pi }:\omega (\delta ,f)=O(\omega (\delta ))\}, \end{aligned}$$
(1.5)

where \(\omega \) is the modulus of continuity, that is, \(\omega \) is a positive non-decreasing continuous function on \([0,2\pi ]\) with the properties:

  1. (i)

    \(\omega (0)=0\);

  2. (ii)

    \(\omega (\delta _{1}+\delta _{2})\le \omega (\delta _{1})+\omega (\delta _{2})\);

  3. (iii)

    \(\omega (\lambda \delta )\le (\lambda +1)\omega (\delta )~~(\lambda \ge 0)\).

    Also, \(H^{\omega }\) is a Banach space with the norm:

    $$\begin{aligned} \Vert f\Vert _{\omega }=\Vert f\Vert _{c}+\sup _{x,y}\frac{|f(x)-f(y)|}{\omega (|x-y|)}~~(x\ne y). \end{aligned}$$
    (1.6)

Here, as regards to Lipschitz classes we may recall that, a function \(f\in Lip (\omega (t); r)\),

if

$$\begin{aligned} \Vert f(x+t)-f(x)\Vert _{r}=O(\omega (t))~~(r\ge 1),~t>0, \end{aligned}$$

which implies that

$$\begin{aligned} \frac{\Vert f(x+t)-f(x)\Vert _{r}}{\omega (t)}=A_{1}(f;\omega (t)). \end{aligned}$$

Consider the space (see [6]),

$$\begin{aligned} H_{r}^{(\omega )}=\{f\in L_{r}[0,2\pi ]:A_{1}(f;\omega (t))<\infty \}. \end{aligned}$$
(1.7)

It is also a Banach space with the norm:

$$\begin{aligned} \Vert f\Vert _{r}^{\omega }=\Vert f\Vert _{r}+A_{1}(f;\omega (t)). \end{aligned}$$
(1.8)

Furthermore, Das et al. [2] generalized a space,

$$\begin{aligned} H_{(\alpha ,r)}=\{f\in L_{r}:\Vert f(x+t)-f(x)\Vert _{r}=O(t^{\alpha })~~(r\ge 1),~t>0\}, \end{aligned}$$
(1.9)

under the norm

$$\begin{aligned} \Vert f\Vert _{(\alpha ,r)}=\Vert f\Vert _{r}+\frac{\Vert f(x+t)-f(x)\Vert _{r}}{(t^{\alpha })}, \end{aligned}$$
(1.10)

which is also a Banach space.

Similarly, \(f\in W (L_{r},\omega (t))\),

if

$$\begin{aligned} \Vert (f(x+t)-f(x))\sin ^{\beta }x\Vert _{r}=O(\omega (t))~~(\beta >0) \end{aligned}$$

which implies that

$$\begin{aligned} \frac{\Vert (f(x+t)-f(x))\sin ^{\beta }x\Vert _{r}}{(\omega (t))}=A_{2}(f;\omega (t)). \end{aligned}$$

Now, we define the space,

$$\begin{aligned} H_{L_{r}}^{(\omega )}=\{f\in L_{r}[0,2\pi ]:A_{2}(f;\omega (t))<\infty \}. \end{aligned}$$
(1.11)

It is also Banach space under the norm

$$\begin{aligned} \Vert f\Vert _{L_{r}}^{\omega }=\Vert f\Vert _{L_{r}}+A_{2}(f;\omega (t)). \end{aligned}$$
(1.12)

Next, in the spaces \(H_{L_{r}}^{(\omega )}\) and \(H_{L_{r}}^{(v)}\), if \(\frac{\omega (t)}{v(t)}\) is non-decreasing, then

$$\begin{aligned} H_{L_{r}}^{(\omega )}\subseteq H_{L_{r}}^{(v)}\subseteq L_{r}~~(r\ge 1). \end{aligned}$$
(1.13)

Also,

$$\begin{aligned} \Vert f\Vert _{L_{r}}^{v}\le \max \left( 1,\frac{\omega (2\pi )}{v(2\pi )}\right) \Vert f\Vert _{L_{r}}^{(\omega )}. \end{aligned}$$

Next, for \((0\le \gamma <\alpha \le 1)\) if we put \(\omega (t)=t^{\alpha }\), \(v(t)=t^{\beta }\) and \(\beta =0\) then (1.13) reduces to the following:

$$\begin{aligned} H_{(\alpha ,r)}\subseteq H_{(\gamma ,r)}\subseteq L_{r}~~(r\ge 1). \end{aligned}$$
(1.14)

Note that the space \(H_{(\alpha ,\infty )}\) reduces to \(H_{\alpha }\) space.

Remark 1

If \(\omega (t)=t^{\alpha }~~(0<\alpha \le 1)\), then the space \(H^{\omega }\) reduces to the \(H_{\alpha }\) space (the norm \(\Vert .\Vert _{\omega }\) being replaced by \(\Vert .\Vert _{\alpha }\)) and if \(\omega (t)=t^{\alpha }~~(0<\alpha \le 1)\), then the space \(H_{r}^{(\omega )}\) reduces to the \(H_{(\alpha ,r)}\) space (with the norm \(\Vert f\Vert _{r}^{(\omega )}\) replaced by \(\Vert f\Vert _{(\alpha ,r)}\)).

Remark 2

Let

$$\begin{aligned}H_{L_{r}}^{(\omega )}=\{f\in L_{r}[0,2\pi ]:A_{2}(f;\omega (t))<\infty \}.\end{aligned}$$

If \(\beta =0\), then the space \(H_{L_{r}}^{(\omega )}\) reduces to the \(H_{r}^{(\omega )}\) space and if \(\beta =0\), \(\omega (t)=t^{\alpha }\) then the space \(H_{L_{r}}^{(\omega )}\) reduces to the \(H_{(\alpha ,r)}\) space.

Remark 3

If \(\frac{\omega (t)}{t}\rightarrow 0\)  \((t\rightarrow 0)\), then \(f'(x)=0\) implies f is constant.

Let \((a_{n})\) and \((b_{n})\) be sequences of non-negative integers satisfying,

  1. (i)

    \(a_{n}<b_{n}\)  \((n\in {\mathbb {N}})\)

    and

  2. (ii)

    \(\displaystyle \lim _{n\rightarrow \infty }b_{n}=\infty \).

The deferred Cesàro mean, \(D(a_{n},b_{n})\) is defined by Agnew [1, p. 414],

$$\begin{aligned} D_{n}(S_{n})=\frac{S_{a_{n}+1}+S_{a_{n}+2}+S_{a_{n}+3}+\cdots +S_{b_{n}}}{b_{n}-a_{n}}. \end{aligned}$$
(1.15)

In the notation of matrix transformation

$$\begin{aligned} D_{n}(S_{n})=\sum _{k=0}^{\infty }a_{n,k}S_{k}, \end{aligned}$$

where

$$\begin{aligned} a_{n,k}=\left\{ \begin{array}{ll} \frac{1}{q_{n}-p_{n}}&{} (p_{n}<k\le q_{n})\\ \\ 0 &{} (\text {otherwise}). \\ \end{array} \right. \end{aligned}$$

It is known that (Agnew [1]) \(D(a_{n}, b_{n})\) is regular under the conditions (i) and (ii).

Let \((p_{n})\) be a sequence of positive real numbers. The deferred Nörlund mean \(D_{a}^{b}N_{n}(f;x)\) is defined by Deǧer and Küçükaslan [4],

$$\begin{aligned} D_{a}^{b}N_{n}(f;x)=\frac{1}{P_{0}^{b_{n}-a_{n}-1}}\displaystyle \sum _{m=a_{n}+1}^{b_{n}}p_{b_{n}-m}S_{m}(f;x), \end{aligned}$$
(1.16)

where

$$\begin{aligned} P_{0}^{b_{n}-a_{n}-1}=\displaystyle \sum _{k=0}^{b_{n}-a_{n}-1}p_{k}\ne 0. \end{aligned}$$

Remark 4

If \(b_{n} = n\) and \(a_{n} =0\), then the \(D_{a}^{b}N_{n}(f;x)\) mean in (2.16) reduces to the classical Nörlund mean. Moreover, if \(p_{n} = 1\)\((\forall ~ n)~(n\ge 0)\) in (1.16), then this yields (1.15), that is, the deferred Cesàro mean defined by Agnew [1]. Finally, if \(b_{n}=n,~a_{n}=0\) in (1.15), then it reduces to the classical Cesàro mean of order 1.

We use the following notations:

$$\begin{aligned} \psi _{n}(x)= & {} D_{a}^{b}N_{n}(f;x)-f(x);\\ G_{x,y}(t)= & {} \phi _{x+y}(t)-\phi _{x}(t);\\ h= & {} h(P_{0}^{a_{n}})=\frac{\pi }{P_{0}^{a_{n}}}. \end{aligned}$$

2 Main result

In view of estimating the rate of convergence of Fourier series via the Deferred Nörlund Mean, we establish the following theorems based on generalized Hölder metric space \(H_{L_{r}}^{\omega }\) in \(W(L_{r},\omega (t))\)-class.

Theorem 1

Let v and \(\omega \) be moduli of continuity such that \((\frac{v}{\omega })\) is non-decreasing and \(f\in H_{L_{r}}^{(\omega )}~~(r\ge 1)\).

Let

$$\begin{aligned} b_{n}=(2j+1)a_{n}+2j, \end{aligned}$$
(2.1)

where j is a positive integer. Then

$$\begin{aligned} {\text {(I)}}~~\Vert D_{a}^{b}(N_{n}(f;x))-f(x)\Vert _{L_{r}}^{v}= & {} O(p_{2j(a_{n}+1)+a_{n}-m})+O\left( \frac{p_{2j(a_{n}+1)+a_{n}-m}}{ P_{0}^{(j-1)+(a_{n})}}\right) \\&+O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}} \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}\frac{dt}{t^{3}}. \end{aligned}$$

If in addition, \(\frac{\omega (t)}{tv(t)}\) is non-increasing, then

$$\begin{aligned} {\text {(II)}}~~\Vert D_{a}^{b}(N_{n}(f;x))-f(x)\Vert _{L_{r}}^{v}= & {} O(p_{2j(a_{n}+1)+a_{n}-m})\\&+O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}} \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}\frac{dt}{t^{3}} \end{aligned}$$

and a fortiori

$$\begin{aligned}&{\text {(III)}}~~\Vert D_{a}^{b}(N_{n}(f;x))-f(x)\Vert _{L_{r}}^{v}=O(p_{2j(a_{n}+1)+a_{n}-m})+ O\left( \frac{\omega {\left( \frac{\pi }{P_{0}^{(j-1)+a_{n}}}\right) }}{v{\left( \frac{\pi }{P_{0}^{(j-1)+a_{n}}}\right) }}\right) . \end{aligned}$$

Theorem 2

Let \(f\in W(L_{r},\omega (t))~~(r\ge 1)\) and let

$$\begin{aligned} b_{n}=(2j+1)a_{n}+2j, \end{aligned}$$
(2.2)

where j is a positive integer. Then

$$\begin{aligned} {\text {(I)}}~\Vert D_{a}^{b}(N_{n}(f;x))-f(x)\Vert _{L_{r}}= & {} O(p_{2j(a_{n}+1)+a_{n}-m})+O\left( \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\right) \nonumber \\&+O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}} \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{t^{3}}dt. \end{aligned}$$

If in addition, \(\frac{\omega (t)}{t}\) is non-increasing, then

$$\begin{aligned} {\text {(II)}}~\Vert D_{a}^{b}(N_{n}(f;x))-f(x)\Vert _{L_{r}}= & {} O(p_{2j(a_{n}+1)+a_{n}-m})\nonumber \\&+O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}} \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{t^{3}}dt \end{aligned}$$

and a fortiori

$$\begin{aligned}&{\text {(III)}}~\Vert D_{a}^{b}(N_{n}(f;x))-f(x)\Vert _{L_{r}}=O(p_{2j(a_{n}+1)+a_{n}-m})+ O\left( \omega {\left( \frac{\pi }{P_{0}^{(j-1)+a_{n}}}\right) }\right) . \end{aligned}$$

We need the following lemma.

Lemma 1

Let v and \(\omega \) be moduli of continuity such that \((\frac{v}{\omega })\) is non-decreasing. Then for \(0\le t\le \pi \) and \(r\ge 1\),

  1. (i)

    \(\text {(i)}~~\Vert \phi _{x}(t)\Vert _{L_{r}}\le 2\omega (t);\)

  2. (ii)

    \(\Vert \phi _{x}(t)-\phi _{x+y}(t)\Vert _{L_{r}}=O(1)\{\omega (t), \omega (|y|)\};\)

  3. (iii)

    \(\Vert \phi _{x}(t)-\phi _{x+y}(t)\Vert _{L_{r}}=O(1) \omega (|y|)\frac{\omega (t)}{v(t)};\)

  4. (iv)

    \(\Vert \phi _{x}(t)-\phi _{x+y}(t)-\phi _{x}(t+h)+\phi _{x+y}(t+h)\Vert _{L_{r}}=O(1) \omega (|y|)\frac{\omega (h)}{v(h)}~~\left( h=\frac{\pi }{P_{0}^{(j-1)+a_{n}}}\right) .\)

Proof

It can be proved in the similar line as in (see [3]). \(\square \)

Proof of the Theorem 1

Let \(S_{n}(x)\) be the partial sum of Fourier series at x and let \(D_{a}^{b}N_{n}(f;x)\) be the deferred Nörlund Mean of Fourier series of the form (1.16), then it can be easily verified that

$$\begin{aligned} D_{a}^{b}N_{n}(f;x)=\frac{1}{2\pi }\int _{0}^{\pi } \frac{p_{b_{n}-m}\sin P_{0}^{\frac{(b_{n}+a_{n}+2)}{2}}t\sin P_{0}^{\frac{(b_{n}-a_{n}-1)}{2}}t}{P_{0}^{b_{n}-a_{n}-1}\sin ^{2}\frac{t}{2}} \{f(x+t)+f(x-t)\}dt \end{aligned}$$
(2.3)

which reduces to (by virtute of condition (2.1)),

$$\begin{aligned} D_{a}^{b}N_{n}(f;x)=\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{0}^{\pi } \frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(2\sin \frac{t}{2})^{2}} \{f(x+t)+f(x-t)\}dt. \end{aligned}$$
(2.4)

It may be easily verified that

$$\begin{aligned} \frac{2}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{0}^{\pi }\phi _{x}(t)\frac{\sin P_{0}^{ja_{n}}t\sin P_{0}^{(j-1)+(a_{n})}t}{(2\sin \frac{t}{2})^{2}}dt=1, \end{aligned}$$
(2.5)

and hence

$$\begin{aligned} \psi _{n}(x)=D_{a}^{b}(N_{n}(f;x))-f(x)=\frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{0}^{\pi } \phi _{x}(t)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+a_{n}}t}{(2\sin \frac{t}{2})^{2}}dt. \end{aligned}$$
(2.6)

Clearly, as per the considered metric in the definition, we have

$$\begin{aligned} \Vert \psi \Vert _{L_{r}}^{(\omega )}=\Vert \psi \Vert _{L_{r}}+\sup _{y\ne 0} \frac{\Vert (\psi _{n}(x)-\psi _{n}(x+y))\sin ^{\beta }x\Vert _{L_{r}}}{\omega (|y|)}. \end{aligned}$$
(2.7)

Now,

$$\begin{aligned}&(\psi _{n}(x+y)-\psi _{n}(x))\sin ^{\beta }x\nonumber \\&\quad =\frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{0}^{\pi } \{\phi _{x+y}(t)-\phi _{x}(t)\}\frac{\sin ^{\beta }x\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+a_{n}}t}{(2\sin \frac{t}{2})^{2}}dt\nonumber \\&\quad =\frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{0}^{\pi } \{G_{x,y}(t)\}\frac{\sin ^{\beta }x\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(2\sin \frac{t}{2})^{2}}dt\nonumber \\&\quad =\frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{0}^{h} \{G_{x,y}(t)\}\frac{\sin ^{\beta }x\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(2\sin \frac{t}{2})^{2}}dt\nonumber \\&\qquad +\frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{h}^{\pi } \{G_{x,y}(t)\}\frac{\sin ^{\beta }x\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(2\sin \frac{t}{2})^{2}}dt\nonumber \\&\quad =I+J~~(\text {say}). \end{aligned}$$
(2.8)

Also, by simple calculation

$$\begin{aligned} \frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(2\sin \frac{t}{2})^{2}}=O(P_{0}^{(j-1)+a_{n}})^{2}~~(0<t<\pi ). \end{aligned}$$

Now (for I), by the generalized Minkowski inequality and for \((a_{n}\ge 1)\) we have

$$\begin{aligned} \Vert I\Vert _{L_{r}}\le & {} \frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{0}^{h} \sin ^{\beta }x\Vert G_{x,y}(t)\Vert _{p}\left| \frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(2\sin \frac{t}{2})^{2}}\right| dt\nonumber \\= & {} O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{ P_{0}^{(j-1)+(a_{n})}}(v|y|)(P_{0}^{(j-1)+(a_{n})})^{2}\int _{0}^{h}\sin ^{\beta }t\frac{\omega (t)}{v(t)}dt~(\text {by (iii) of Lemma}~1\mathrm{)}\nonumber \\= & {} O(1)p_{2j(a_{n}+1)+a_{n}-m}P_{0}^{(j-1)+(a_{n})}(v|y|)h\frac{\omega (h)}{v(h)}\nonumber \\= & {} O(1)p_{2j(a_{n}+1)+a_{n}-m}(v|y|)\frac{\omega (h)}{v(h)}. \end{aligned}$$
(2.9)

Next,

$$\begin{aligned} J= & {} \frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{h}^{\pi }\sin ^{\beta }t G_{x,y}(t)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+a_{n}}t}{(2\sin \frac{t}{2})^{2}}dt\\= & {} \frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{h}^{\pi } \sin ^{\beta }t G_{x,y}(t)\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+a_{n}}t\left\{ \frac{1}{(2\sin \frac{t}{2})^{2}}-\frac{1}{t^{2}}\right\} dt\\&+\frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{h}^{\pi } \sin ^{\beta }tG_{x,y}(t)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+a_{n}}t}{t^{2}}dt\\= & {} J_{1}+J_{2} ~~(\text {say}). \end{aligned}$$

Furthermore, since \(\left\{ \frac{1}{(2\sin \frac{t}{2})^{2}}-\frac{1}{t^{2}}\right\} \) is bounded, we get

$$\begin{aligned} \Vert J_{1}\Vert _{L_{r}}\le & {} \frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{h}^{\pi }\sin ^{\beta }t \Vert G_{x,y}(t)\Vert _{p}dt\nonumber \\= & {} O(1)\frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}(v|y|)\int _{h}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}dt~(\text {by Lemma}~1\mathrm{)}\nonumber \\= & {} O(1)\frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}(v|y|). \end{aligned}$$
(2.10)

Next,

$$\begin{aligned} J_{2}=\frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{h}^{\pi } \sin ^{\beta }t G_{x,y}(t)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{t^{2}}dt. \end{aligned}$$
(2.11)

Replacing t by \(t+h\) in (2.11), for any positive integer j, we obtain

$$\begin{aligned} J_{2}=-\frac{2p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{0}^{\pi -h}\sin ^{\beta }t G_{x,y}(t+h)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(t+h)^{2}}dt. \end{aligned}$$
(2.12)

Clearly, from (2.11) and (2.12), it follows that

$$\begin{aligned} J_{2}= & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{h}^{\pi } \sin ^{\beta }tG_{x,y}(t)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+a_{n}}t}{t^{2}}dt\nonumber \\&-\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{0}^{\pi -h}\sin ^{\beta }t G_{x,y}(t+h)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(t+h)^{2}}dt\nonumber \\= & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{h}^{\pi } \sin ^{\beta }tG_{x,y}(t)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{t^{2}}dt\nonumber \\&-\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{0}^{h} \sin ^{\beta }tG_{x,y}(t+h)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+a_{n}}t}{(t+h)^{2}}dt\nonumber \\&-\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{0}^{\pi }\sin ^{\beta }t G_{x,y}(t+h)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+a_{n}}t}{(t+h)^{2}}dt\nonumber \\&+\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{\pi -h}^{\pi } \sin ^{\beta }tG_{x,y}(t+h)\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(t+h)^{2}}dt\nonumber \\= & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{h}^{\pi }\left\{ \frac{G_{x,y}(t)}{t^{2}}-\frac{G_{x,y}(t+h)}{(t+h)^{2}}\right\} \sin ^{\beta }t\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}tdt\nonumber \\&-\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{0}^{h} G_{x,y}(t+h)\sin ^{\beta }t\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+a_{n}}t}{(t+h)^{2}}dt\nonumber \\&+\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+a_{n}}}\int _{\pi -h}^{\pi } G_{x,y}(t+h)\sin ^{\beta }t\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(t+h)^{2}}dt\nonumber \\= & {} K-L+M~~(\text {say}). \end{aligned}$$

Moreover, since

$$\begin{aligned} \sin P_{0}^{j(a_{n})}t\sin P_{0}^{j-1(a_{n})}t=O((P_{0}^{(j-1)+a_{n}})^{2}t^{2})~~(0<t<\pi ); \end{aligned}$$

so, it follows that

$$\begin{aligned} \Vert L\Vert _{L_{r}}\le & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{0}^{h}\Vert G_{x,y}(t+h)\Vert _{p}\sin ^{\beta }t\frac{(P_{0}^{(j-1)+a_{n}})^{2}t^{2}}{(t+h)^{2}}dt\nonumber \\= & {} O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{ P_{0}^{(j-1)+(a_{n})}}(v|y|)\int _{0}^{h}\sin ^{\beta }t\frac{\omega (t+h)}{v(t+h)}(P_{0}^{(j-1)+(a_{n})})^{2}dt\nonumber \\= & {} O(1)p_{2j(a_{n}+1)+a_{n}-m} P_{0}^{(j-1)+(a_{n})}(v|y|)\int _{0}^{h}\sin ^{\beta }t\frac{\omega (t+h)}{v(t+h)}dt\nonumber \\= & {} O(1)p_{2j(a_{n}+1)+a_{n}-m} P_{0}^{(j-1)+(a_{n})}(v|y|)\frac{\omega (2h)}{v(2h)}\int _{0}^{h}\sin ^{\beta }tdt\nonumber \\= & {} O(1)p_{2j(a_{n}+1)+a_{n}-m} P_{0}^{(j-1)+(a_{n})}(v|y|)\frac{\omega (h)}{v(h)}h\nonumber \\= & {} O(1)p_{2j(a_{n}+1)+a_{n}-m} (v|y|)\frac{\omega (h)}{v(h)} ~ \text {as} ~(\omega (2h)\le 3\omega (h))~\text {and} ~(v(2h)\ge v(h).)\nonumber \\ \end{aligned}$$
(2.13)

Again, since

$$\begin{aligned} |\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t|\le 1~~(\pi -h<t<\pi ); \end{aligned}$$

so, it follows that

$$\begin{aligned} \Vert M\Vert _{L_{r}}\le & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{\pi -h}^{\pi }\Vert G_{x,y}(t+h)\Vert _{p}\sin ^{\beta }t\frac{dt}{(t+h)^{2}}\nonumber \\= & {} O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}(v|y|)\int _{\pi -h}^{\pi }\sin ^{\beta }t\frac{\omega (t+h)}{v(t+h)}\frac{dt}{(t+h)^{2}}\nonumber \\= & {} O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}(v|y|)\int _{\pi }^{\pi +h}\sin ^{\beta }t\frac{\omega (\theta )}{v(\theta )}\frac{d\theta }{(\theta )^{2}}\nonumber \\= & {} O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}(v|y|). \end{aligned}$$
(2.14)

Next,

$$\begin{aligned} K= & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{h}^{\pi }G_{x,y}(t)\sin ^{\beta }t\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{t^{2}}dt\nonumber \\&-\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{h}^{\pi }G_{x,y}(t+h)\sin ^{\beta }t\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{t^{2}}dt\nonumber \\&+\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)(a_{n})}}\int _{h}^{\pi }G_{x,y}(t+h)\sin ^{\beta }t\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{t^{2}}dt\nonumber \\&-\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{h}^{\pi }G_{x,y}(t+h)\sin ^{\beta }t\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{(t+h)^{2}}dt\nonumber \\= & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{h}^{\pi }\{G_{x,y}(t)-G_{x,y}(t+h)\}\sin ^{\beta }t\frac{\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t}{t^{2}}dt\nonumber \\&+\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{h}^{\pi }G_{x,y}(t+h)\sin ^{\beta }t\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t\left\{ \frac{1}{t^{2}}-\frac{1}{(t+h)^{2}}\right\} dt\nonumber \\= & {} K_{1}+K_{2}~~(say). \end{aligned}$$

Also, since

$$\begin{aligned} |\sin P_{0}^{j(a_{n})}t\sin P_{0}^{(j-1)+(a_{n})}t|\le 1 ~~(h<t<\pi ); \end{aligned}$$

so, using condition (iv) of Lemma 1, we get

$$\begin{aligned} \Vert K_{1}\Vert _{L_{r}}\le & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\int _{h}^{\pi }\Vert G_{x,y}-G_{x+y}\Vert _{p}\sin ^{\beta }t\frac{dt}{t^{2}}\nonumber \\= & {} O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}(v|y|)\frac{\omega (h)}{v(h)}\int _{h}^{\pi }\sin ^{\beta }t\frac{dt}{t^{2}}\nonumber \\= & {} O(1)p_{2j(a_{n}+1)+a_{n}-m}(v|y|)\frac{\omega (h)}{v(h)}. \end{aligned}$$
(2.15)

Next,

$$\begin{aligned} \Vert K_{2}\Vert _{L_{r}}\le & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{ P_{0}^{(j-1)+(a_{n})}}\int _{h}^{\pi }\Vert G_{x+y}(t+h)\Vert \sin ^{\beta }t\left\{ \frac{1}{t^{2}}-\frac{1}{(t+h)^{2}}\right\} dt\nonumber \\= & {} O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{ (P_{0}^{(j-1)+(a_{n})})^{2}}(v|y|)\int _{h}^{\pi }\sin ^{\beta }t\frac{\omega (t+h)}{v(t+h)}\frac{(t+h)^{2}-t^{2}}{t^{2}(t+h)^{2}}dt\nonumber \\= & {} O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}}(v|y|)\int _{h}^{\pi } \sin ^{\beta }t\frac{\omega (t+h)}{v(t+h)}\frac{dt}{t^{3}}\nonumber \\= & {} O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}}(v|y|) \int _{h}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}\frac{dt}{t^{3}}. \end{aligned}$$
(2.16)

Collecting the results from (2.9)–(2.16), we obtain

$$\begin{aligned} \sup _{y\ne 0}\frac{\Vert \psi _{n}(x)-\psi _{n}(x+y)\Vert _{L_{r}}}{(v|y|)}= & {} O(p_{2j(a_{n}+1)+a_{n}-m})+O\left( \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\right) \nonumber \\&+O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}} \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}\frac{dt}{t^{3}}.\nonumber \\ \end{aligned}$$
(2.17)

Similarly, it can be proved that

$$\begin{aligned} \Vert \psi _{n}(x)\Vert _{L_{r}}= & {} O(p_{2j(a_{n}+1)+a_{n}-m})+O\left( \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\right) \nonumber \\&+O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}} \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}\frac{dt}{t^{3}}. \end{aligned}$$
(2.18)

Hence, collecting the results of (2.7), (2.17) and (2.18), we obtain

$$\begin{aligned} \Vert \psi _{n}(x)\Vert _{r}^{v}= & {} O(p_{2j(a_{n}+1)+a_{n}-m})+O\left( \frac{p_{2j(a_{n}+1)+a_{n}-m}}{\pi P_{0}^{(j-1)+(a_{n})}}\right) \nonumber \\&+O(1)\frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}} \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}\frac{dt}{t^{3}}, \end{aligned}$$
(2.19)

which establishes the proof (I) of Theorem 1.

If in addition \(\frac{\omega (t)}{tv(t)}\) is non-increasing, then we have

$$\begin{aligned} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}} \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}\frac{dt}{t^{3}}\ge & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}}\frac{\omega (\pi )}{\pi v(\pi )} \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{dt}{t^{2}}\nonumber \\\ge & {} \frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}}. \end{aligned}$$
(2.20)

Furthermore,

$$\begin{aligned}&\frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}} \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}\frac{dt}{t^{3}}\nonumber \\&\quad \le \frac{p_{2j(a_{n}+1)+a_{n}-m}}{(P_{0}^{(j-1)+(a_{n})})^{2}}\frac{(P_{0}^{(j-1)+(a_{n})})}{\pi } \frac{\omega \left( \frac{\pi }{P_{0}^{(j-1)+(a_{n})}}\right) }{ v\left( \frac{\pi }{P_{0}^{(j-1)+(a_{n})}}\right) } \int _{\frac{\pi }{P_{0}^{(j-1)+a_{n}}}}^{\pi }\sin ^{\beta }t\frac{dt}{t^{2}}\nonumber \\&\quad =O\left( \frac{\omega \left( \frac{\pi }{P_{0}^{(j-1)+(a_{n})}}\right) }{ v\left( \frac{\pi }{P_{0}^{(j-1)+(a_{n})}}\right) }\right) . \end{aligned}$$
(2.21)

Using (2.20) and (2.21) in (2.19), we obtain (II) and (III) of Theorem 1.

This completes the proof of Theorem 1. \(\square \)

Proof of the Theorem 2

Proceeding in the similar line as in Theorem 1 and using the fact,

$$\begin{aligned} \Vert \phi _{x}(t)\Vert _{L_{r}}=\Vert f(x+t)-f(x)\sin ^{\beta } x\Vert _{L_{r}}=O(\omega (t))~\text {~for}~~f\in W(L_{r},\omega (t))~~(r\ge 1) \end{aligned}$$

we can prove Theorem 2. \(\square \)

3 Corollaries and observations

Directly, as the consequences of Theorems 1 and 2, we have the following Corollaries.

Corollary 1

Let v and \(\omega \) be moduli of continuity such that \((\frac{v}{\omega })\) is non-decreasing and \(f\in H_{L_{r}}^{(\omega )}~~(r\ge 1)\) and let

$$\begin{aligned} b_{n}=(2j+1)a_{n}+2j, \end{aligned}$$
(3.1)

where j is a positive integer. Then

$$\begin{aligned} {\text {(I)}}~\Vert D_{0}^{n}(N_{n}(f;x))-f(x)\Vert _{r}^{v}= & {} O(p_{2j-m})+O\left( \frac{p_{2j-m}}{ P_{0}^{(j-1)}}\right) \\&+O(1)\frac{p_{2j-m}}{(P_{0}^{(j-1)})^{2}} \int _{\frac{\pi }{P_{0}^{j-1}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}\frac{dt}{t^{3}}. \end{aligned}$$

If in addition \(\frac{\omega (t)}{tv(t)}\) is non-increasing then

$$\begin{aligned}&{\text {(II)}}~\Vert D_{0}^{b}(N_{n}(f;x))-f(x)\Vert _{r}^{v}=O(p_{2j-m}) +O(1)\frac{p_{2j-m}}{(P_{0}^{(j-1)})^{2}} \int _{\frac{\pi }{P_{0}^{j-1}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)}{v(t)}\frac{dt}{t^{3}} \end{aligned}$$

and a fortiori

$$\begin{aligned}&{\text {(III)}}~\Vert D_{0}^{b}(N_{n}(f;x))-f(x)\Vert _{r}^{v}=O(p_{2j-m})+ O\left( \frac{\omega {\left( \frac{\pi }{P_{0}^{j-1}}\right) }}{v{\left( \frac{\pi }{P_{0}^{j-1}}\right) }}\right) . \end{aligned}$$

Proof

By substituting \(b_{n}=n,~a_{n}=0\) in the associated conditions and by using Theorem 1, the proof of Corollary 1 follows. \(\square \)

Corollary 2

Let v and \(\omega \) be moduli of continuity such that \((\frac{v}{\omega })\) is non-decreasing and \(f\in W(L_{r},\omega (t)), ~r\ge 1\) and let

$$\begin{aligned} b_{n}=(2j+1)a_{n}+2j, \end{aligned}$$
(3.2)

where j is a positive integer. Then

$$\begin{aligned} {\text {(I)}}~\Vert D_{0}^{n}(N_{n}(f;x))-f(x)\Vert _{r}^{v}= & {} O(p_{2j-m})+O\left( \frac{p_{2j-m}}{ P_{0}^{(j-1)}}\right) \\&+O(1)\frac{p_{2j-m}}{(P_{0}^{(j-1)})^{2}} \int _{\frac{\pi }{P_{0}^{j-1}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)dt}{t^{3}}. \end{aligned}$$

If in addition \(\frac{\omega (t)}{tv(t)}\) is non-increasing then

$$\begin{aligned}&{\text {(II)}}~\Vert D_{0}^{b}(N_{n}(f;x))-f(x)\Vert _{r}^{v}=O(p_{2j-m}) +O(1)\frac{p_{2j-m}}{(P_{0}^{(j-1)})^{2}} \int _{\frac{\pi }{P_{0}^{j-1}}}^{\pi }\sin ^{\beta }t\frac{\omega (t)dt}{t^{3}} \end{aligned}$$

and a fortiori

$$\begin{aligned}&{\text {(III)}}~\Vert D_{0}^{b}(N_{n}(f;x))-f(x)\Vert _{r}^{v}=O(p_{2j-m})+ O\left( \omega {\left( \frac{\pi }{P_{0}^{j-1}}\right) }\right) . \end{aligned}$$

Proof

By substituting \(b_{n}=n,~a_{n}=0\) in the associated conditions and by using Theorem 2, the proof of Corollary 2 follows. \(\square \)

In the concluding remarks we can say that, the results established here generalizes the earlier results of Nayak et al. [6], Das et al. [3] and Leindler [5]. Further, our estimation via deferred weighted mean is a sharper estimation than those obtained from the sequence of partial sums of Fourier series.