1 Introduction and Preliminaries

A 2p-times continuously differentiable complex-valued function \(F(z)=u(z)+iv(z)\) in a domain \(D\subseteq \mathbb {C}\) is polyharmonic mapping or p-harmonic if F(z) satisfies the p-harmonic equation

$$\begin{aligned} \Delta ^{p} F=\Delta (\Delta ^{p-1})F=0, \end{aligned}$$

where the Laplacian operator

$$\begin{aligned} \Delta F= 4F_{z\overline{z}}=\frac{\partial ^{2}F}{\partial x^{2}}+\frac{\partial ^{2}F}{\partial y^{2}}. \end{aligned}$$

As we see in Proposition 1 in [2], we know that a mapping F is polyharmonic in a simply connected domain \(D\subseteq \mathbb {C}\) if and only if F has the following representation

$$\begin{aligned} F(z)=\sum _{k=1}^{p}|z|^{2(k-1)}G_{p-k+1}(z), \end{aligned}$$

where each \(G_{p-k+1}\) is harmonic for \(k\in {\{1,\ldots , p}\}\). When \(p=1\), the mapping F is called harmonic. When \(p=2\), the mapping F is called biharmonic. f is called log-p-harmonic mapping if \(\log f\) is p-harmonic mapping. When \(p=1\), the mapping f is called log-harmonic. When \(p=2\), the mapping f is called log-biharmonic, which can be regarded as generalizations of holomorphic functions. So we say that f is called log-p-harmonic mapping in a simply connected domain \(D\subseteq \mathbb {C}\) if and only if f has the form

$$\begin{aligned} f(z)=\prod _{k=1}^{p}(g_{p-k+1}(z))^{|z|^{2(k-1)}}, \end{aligned}$$

where each \(g_{p-k+1}\) is log-harmonic for \(k\in {\{1,\ldots , p}\}\).

For a continuously differentiable mapping f in D, we define

$$\begin{aligned} \Lambda _{f}(z)=\max _{0\le \theta \le 2\pi }|f_{z}(z)+{e}^{-2i\theta }f_{\overline{z}}(z)|=|f_{z}(z)|+|f_{\overline{z}}(z)|, \end{aligned}$$

and

$$\begin{aligned} \lambda _{f}(z)=\min _{0\le \theta \le 2\pi }|f_{z}(z)+{e}^{-2i\theta }f_{\overline{z}}(z)|=||f_{z}(z)|-|f_{\overline{z}}(z)||. \end{aligned}$$

We denote the Jacobian of f by \(J_{f}\),

$$\begin{aligned} J_{f}(z)=|f_{z}|^{2}-|f_{\overline{z}}|^{2}. \end{aligned}$$

For \(r>0\), we let \(\mathbb {D}_{r}\) denote the open disk with center at the origin and radius r. The classical Landau theorem states that if f is an analytic function on the unit disk \(\mathbb {D}=\{z\in \mathbb {C}:|z|<1\}\) with and \(f(0)=f'(0)-1=0\) and \(|f(z)|<M\) for \(z\in \mathbb {D}\), then f is univalent in the disk \(\mathbb {D}_{r_0}\) with \(r_{0}=1/(M+\sqrt{M^{2}-1})\), and \(f(\mathbb {D}_{r_0})\) contains a disk \(\mathbb {D}_{R_{0}}\) with \(R_{0}=Mr_{0}^{2}\). This result is sharp, with the extremal function \(f(z)=Mz((1-Mz)/(M-z))\).

Recently, many authors considered Landau-type theorems for harmonic mappings, biharmonic mappings and p-harmonic mappings [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. Li and Wang [10] introduced the log-p-harmonic mappings and derived two versions of Landau-type theorems, however these results are not sharp. Now we recall the following results.

Theorem A

[2] Let \(F(z)=\sum _{k=1}^{p}|z|^{2(k-1)}G_{p-k+1}(z)\) be a p-harmonic mapping of \(\mathbb {D}\) satisfying \(\Delta G_{p-k+1}=G_{p-k+1}(0)=J_{F}(0)-1=0\), \(|G_{p-k+1}|< M\) for \(k\in \{1, \ldots , p\}\), where \(M\ge 1\). Then there exists \(\rho _{1}\in (0, 1)\) such that F is univalent in \(\mathbb {D}_{\rho _{1}}\), where \(\rho _{1}\) satisfies the following equation:

$$\begin{aligned} \lambda (M)-\frac{4M}{\pi (1-\rho _{1})^{2}}\sum _{k=1}^{p-1}\rho _{1}^{2k}-2M\sum _{k=1}^{p-1}k\rho _{1}^{2k-1} -T(M)\frac{\rho _{1}(2-\rho _{1})}{(1-\rho _{1})^{2}}=0, \end{aligned}$$

where \(\lambda (M)\) is defined as

$$\begin{aligned} \lambda (M)=\left\{ \begin{array}{ll} \frac{\sqrt{2}}{\sqrt{M^{2}-1}+\sqrt{M^{2}+1}}, &{}\quad {1\le M\le M_{0}=\frac{\pi }{2\root 4 \of {2\pi ^2-16}}\approx 1.1296,} \\ \frac{\pi }{4M}, &{}\quad {M>M_{0}}. \end{array} \right. \end{aligned}$$
(1.1)

Here and in what follows, we always assume that \(T(x):=\min \{\sqrt{2x^{2}-2}, 4x/\pi \}\).

Moreover, the range \(F(\mathbb {D}_{\rho _{1}})\) contains a univalent disk \(\mathbb {D}_{\rho _{1}'}\), where

$$\begin{aligned} \rho _{1}'=\rho _{1}\left[ \lambda _{0}(M)-\frac{T(M)\rho _{1}}{1-\rho _{1}}- \frac{4M}{\pi (1-\rho _{1})}\sum _{k=1}^{p-1}\rho _{1}^{2k}\right] . \end{aligned}$$

Theorem B

[10] Let \(f(z)=\prod _{k=1}^{p}(g_{p-k+1}(z))^{|z|^{2(k-1)}}\) be a log-p-harmonic mapping of \(\mathbb {D}\), where \(g_{p-k+1}\) is log-harmonic with \(g_{p-k+1}(0)=g_{p}(0)=J_{f}(0)=1\), \(|g_{p-k+1}|<M_{1}\) for \(k\in \{2, \ldots , p\}\), and \(|g_{p}|<M_{2}\), where \(M_{i}\ge 1(i=1, 2)\) are positive constants. Then there exists \(\rho _{2}\in (0, 1)\) such that f is univalent in \(\mathbb {D}_{\rho _{2}}\), where \(\rho _{2}\) satisfies the following equation:

$$\begin{aligned} \lambda _{0}(M_{2}^{*})-\frac{T(M_{2}^{*})\rho _{2}(2-\rho _{2})}{(1-\rho _{2})^{2}}- \frac{4M_{1}^{*}}{\pi {(1-\rho _{2})^{2}}}\sum _{k=1}^{p-1}\rho _{2}^{2k}-2M_{1}^{*}\sum _{k=1}^{p-1}k\rho _{2}^{2k-1}=0, \end{aligned}$$

and \(M_{i}^{*}=\log M_{i}+\pi (i=1, 2)\).

Moreover, the range \(f(\mathbb {D}_{\rho _{2}})\) contains a univalent disk \(\mathbb {D}(z_{2}, \rho _{2}')\), where

$$\begin{aligned} z_{2}=\cosh \left( \frac{\sigma _{2}}{\sqrt{2}}\right) , \quad \rho _{2}'=\min \left\{ \sinh \left( \frac{\sigma _{2}}{\sqrt{2}}\right) , \cosh \left( \frac{\sigma _{2}}{\sqrt{2}}\right) \sin \left( \frac{\sigma _{2}}{\sqrt{2}}\right) \right\} , \end{aligned}$$

and

$$\begin{aligned} \sigma _{2}=\rho _{2}\left[ \lambda _{0}(M_{2}^{*})-\frac{T(M_{2}^{*})\rho _{2}}{1-\rho _{2}}- \frac{4M_{1}^{*}}{\pi {(1-\rho _{2})}}\sum _{k=1}^{p-1}\rho _{2}^{2k}\right] . \end{aligned}$$

Theorem C

[2] Let \(f(z)=|z|^{2(p-1)}G(z)\) be p-harmonic of \(\mathbb {D}\), where \(p>1,G\) is harmonic, \(g(0)=J_{G}(0)-1=0\), and \(|G(z)|\le M\) for some \(M\ge 1\). Then f is univalent in \(\mathbb {D}_{\rho _3}\), where

$$\begin{aligned} \rho _3=\frac{\lambda +2T-\sqrt{4T_{2}+T\lambda }}{\lambda +3T}. \end{aligned}$$

Moreover, the range \(f(\mathbb {D}_{\rho _3})\) contains a univalent disk \(\mathbb {D}_{\rho _3'}\), where

$$\begin{aligned} \rho _3'=\frac{(\lambda +2T-\sqrt{4T_{2}+T\lambda })^{2p}}{(\lambda +3T)^{2p-1}}. \end{aligned}$$

Here \(T=T(M)=\min \{\sqrt{2M^{2}-2}, 4M/\pi \}\) and \(\lambda =\lambda (M)\) is defined by (1.1).

Theorem D

[11] Let \(F(z)=|z|^2g(z)+h(z)\) be a biharmonic mapping of the unit disk \(\mathbb {D}\), with g(z), h(z) are harmonic on \(\mathbb {D}\) and \(F(0)=g(0)=h(0)=\lambda _{F}(0)-1=0,|g(z)|\le M\) and \(\Lambda _{h}\le \Lambda \) for \(z\in \mathbb {D}\), where \(M\ge 0\), \(\Lambda \ge 1\). Then F is univalent in the disk \(\mathbb {D}_{\rho _4}\), where \(\rho _4\) is the minimum positive root of the equation

$$\begin{aligned} 1-2\rho M-\frac{2M\rho ^2}{(1-\rho )^2}-\frac{(\Lambda ^2-1)\rho }{\Lambda (1-\rho )}=0, \end{aligned}$$
(1.2)

and \(F(\mathbb {D}_{\rho _4})\) contains a schlicht disk \(\mathbb {D}_{\rho _4'}\) with

$$\begin{aligned} \rho _4'=\left( 1+\Lambda -\frac{1}{\Lambda }\right) \rho _{4}-\frac{2M\rho _{4}^3}{1-\rho _{4}}+\left( \Lambda -\frac{1}{\Lambda }\right) \ln (1-\rho _{4}). \end{aligned}$$
(1.3)

Theorem E

[15] Let \(F(z)=|z|^2g(z)+h(z)\) be a biharmonic mapping of the unit disk \(\mathbb {D}\) with \(g(z),\, h(z)\) are harmonic mappings in \(\mathbb {D}\), and \(g(0)=h(0)=0, \lambda _{F}(0)=\lambda _{g}(0)=\Lambda _{g}(0)=1\), \(\Lambda _{g}(z)\le \Lambda _{1}\) and \(\Lambda _{h}(z)\le \Lambda _{2}\) for \(z\in \mathbb {D}\). Then \(\Lambda _{1}\ge 1,\Lambda _{2}\ge 1\), and F is univalent in the disk \(\mathbb {D}_{\rho _5}\), where \(\rho _5\) is the minumum positive root in (0, 1) of the equation:

$$\begin{aligned} 1-3r^2-\frac{\Lambda _{2}^2-1}{\Lambda _{2}}\cdot \frac{r}{1-r}+\frac{\Lambda _{1}^2-1}{\Lambda _{1}}\cdot \left[ 2r^2+2r\ln (1-r) -\frac{r^3}{1-r}\right] =0,\qquad \end{aligned}$$
(1.4)

and \(F(\mathbb {D}_{\rho _5})\) contains a schlicht disk \(\mathbb {D}_{\rho _5'}\), with

$$\begin{aligned} \rho _5'=\rho _5-\rho _5^3+ \left( \rho _5^2\cdot \frac{\Lambda _{1}^2-1}{\Lambda _{1}}+ \frac{\Lambda _{2}^2-1}{\Lambda _{2}}\right) [\rho _5 +\ln (1-\rho _5)]. \end{aligned}$$
(1.5)

When \(\Lambda _{1}=\Lambda _{2}=1,\rho _5=\frac{\sqrt{3}}{3}\) and \(\rho _5'=\frac{2\sqrt{3}}{9}\) are sharp.

The above Theorems A, B and C didn’t consider the situation when \(\Lambda _{G_p}\le \Lambda _{p}\). In this paper, we consider the case of \(\Lambda _{G_p}\le \Lambda _{p}\), and establish several new Landau-type theorems for polyharmonic mappings or log-p-harmonic mappings (Theorems 2.1, 2.4, 2.6, 2.8, 2.9 and 2.10). In order to derive our main results, we need the following lemmas.

Lemma 1.1

([4]) Suppose that \(f(z)=h(z)+\overline{g(z)}\) is a harmonic mapping of the unit disk \(\mathbb {D}\) with \(h(z)=\sum _{n=1}^\infty a_{n}z^{n}\) and \(g(z)=\sum _{n=1}^\infty b_{n}z^{n}\) are analytic on \(\mathbb {D}\). If \(|f(z)|\le M\) for all \(\mathbb {D}\), then

$$\begin{aligned} \Lambda _{f}(z)\le \frac{4M}{\pi (1-|z|^{2})}. \end{aligned}$$
(1.6)

Lemma 1.2

([14]) Suppose that \(f(z)=h(z)+\overline{g(z)}\) is a harmonic mapping of the unit disk \(\mathbb {D}\) with \(h(z)=\sum _{n=1}^\infty a_{n}z^{n}\) and \(g(z)=\sum _{n=1}^\infty b_{n}z^{n}\) are analytic on \(\mathbb {D}\). If \(|f(z)|\le M\) for all \(\mathbb {D}\), then for \(|z|=r<1\), we have

$$\begin{aligned} |f(z)|\le \frac{4Mr}{\pi (1-r)}. \end{aligned}$$
(1.7)

Lemma 1.3

([11, 12]) Suppose that \(f(z)=h(z)+\overline{g(z)}\) is a harmonic mapping of the unit disk \(\mathbb {D}\) with \(h(z)=\sum _{n=1}^\infty a_{n}z^{n}\) and \(g(z)=\sum _{n=1}^\infty b_{n}z^{n}\) are analytic on \(\mathbb {D}\) and \(\lambda _{f}(0)=1\). If \(\Lambda _{f}(z)\le \Lambda \) for all \(z\in \mathbb {D}\), then

$$\begin{aligned} |a_{n}|+|b_{n}|\le \frac{\Lambda ^{2}-1}{n\Lambda }, \, \, \, n=2, 3, \ldots . \end{aligned}$$
(1.8)

When \(\Lambda >1\) , the above estimates are sharp for all \(n=2, 3, \ldots \), with the extremal functions \(f_{n}(z)\) and \(\overline{f_{n}(z)}\) as follows

$$\begin{aligned} f_{n}(z)=\Lambda ^{2}z-(\Lambda ^{3}-\Lambda )\int _{0}^{z}\frac{1}{\Lambda +z^{n-1}}dz . \end{aligned}$$
(1.9)

When \(\Lambda =1\), then \(f(z)=a_{1}z+\overline{b_{1}}\overline{z}\) with \(||a_{1}|-|b_{1}||=1\).

Lemma 1.4

Suppose that \(f(z)=h(z)+\overline{g(z)}\) is a harmonic mapping of the unit disk \(\mathbb {D}\) with \(h(z)=\sum _{n=1}^\infty a_{n}z^{n}\) and \(g(z)=\sum _{n=1}^\infty b_{n}z^{n}\) are analytic on \(\mathbb {D}\). If \(\Lambda _{f}(z)\le \Lambda \) for all \(z\in \mathbb {D}\), then for each \(z\in \mathbb {D}\),

$$\begin{aligned} |f(z)|\le \Lambda |z|. \end{aligned}$$

Proof

Since \(\Lambda _{f}(z)\le \Lambda \) for all \(z\in \mathbb {D}\), we have

$$\begin{aligned} |f(z)|=\left| \int _{[0,z]}f_{z}(z)dz+f_{\overline{z}}(z)d\overline{z}\right| \le \int _{[0,z]}\Lambda _{f}(z)|dz|\le \Lambda |z|, \end{aligned}$$

which completes the proof. \(\square \)

Lemma 1.5

([14]) Let p be a positive integer. Then for any \(z_{1}\ne z_{2}\) in \(\mathbb {D}_{r}(0<r<1)\), we have

$$\begin{aligned}\int _{0}^{1}|(z_1-z_2)t+z_2|^{2(p-1)}dt\ge \frac{1}{2p-1}\cdot \frac{|z_1|^{2p-1}+|z_2|^{2p-1}}{|z_1|+|z_2|}>0.\end{aligned}$$

2 Main Results

We first prove a new version of Landau-type theorem of polyharmonic mappings as follows.

Theorem 2.1

Let \(F(z)=\sum _{k=1}^{p}|z|^{2(k-1)}G_{p-k+1}(z)\) be a p-harmonic mapping of \(\mathbb {D}\) satisfying \(F(0)=\lambda _{F}(0)-1=0\). Suppose that for each \(k\in {\{1\dots p}\}\), we have

  1. (i)

    \(G_{p-k+1}(z)\) is harmonic in \(\mathbb {D}\), and \(G_{p-k+1}(0)=0\);

  2. (ii)

    \(|G_{p-k+1}(z)|\le M_{p-k+1}\), and \(\Lambda _{G_p}(z)\le {\Lambda _{p}}\), where \(M_{p-k+1}\ge 0, \Lambda _{p}\ge 1\).

Then there is a positive number \(r_{0}\) such that F(z) is univalent in \(\mathbb {D}_{r_{0}}\), where \(r_{0}\) is a unique root in (0, 1) of the equation \(A(r)=0\) and

$$\begin{aligned} A(r)= & {} 1-\frac{4}{\pi (1-r^{2})}\sum _{k=1}^{p-1}r^{2k}M_{p-k}-\frac{8}{\pi (1-r)}\sum _{k=1}^{p-1}kM_{p-k}r^{2k}\nonumber \\&- \frac{\Lambda _{p}^2-1}{\Lambda _{p}}\frac{r}{1-r}. \end{aligned}$$
(2.1)

Moreover, the range \(F(\mathbb {D}_{r_0})\) contains a univalent disk \(\mathbb {D}_{R_0}\), where

$$\begin{aligned} R_{0}=r_{0}+\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}[r_{0}+\ln (1-r_{0})]-\frac{4r_{0}}{\pi (1-r_{0})}\sum _{k=1}^{p-1}M_{p-k}r_{0}^{2k}. \end{aligned}$$
(2.2)

Proof

For each \(k\in {\{1,2,\ldots , p}\}\), we may represent the harmonic functions \(G_{p-k+1}(z)\) in series form as

$$\begin{aligned} G_{p-k+1}(z)= & {} \sum _{j=1}^\infty a_{j, p-k+1}z^{j}+\sum _{j=1}^\infty \overline{b_{j, p-k+1}}\overline{z}^{j},\\ ||a_{1, p}|-|b_{1, p}||= & {} \lambda _{F}(0)=||(G_p)_{z}(0)|-|(G_p)_{\overline{z}}(0)||=\lambda _{G_p}(0)=1. \end{aligned}$$

Now we fix r with \(0<r<1\), to prove the univalence of F, we choose two points \(z_{1},z_{2}\) in \(\mathbb {D}_{r}\). Let \(\Gamma =\{(z_{1}-z_{2})t+z_2:\, 0\le t \le 1\}\), then

$$\begin{aligned} |F(z_{1})-F(z_{2})|= & {} \left| \int _{\Gamma }F_{z}(z)dz+F_{\overline{z}}(z)d\overline{z}\right| \\\ge & {} I_{1}-I_{2}-I_{3}-I_{4}, \end{aligned}$$

where

$$\begin{aligned} I_{1}= & {} \left| \int _{\Gamma }(G_p)_{z}(0)dz+(G_p)_{\overline{z}}(0)d\overline{z}\right| , \\ I_{2}= & {} \left| \sum _{k=1}^{p-1} \int _{\Gamma }|z|^{2k}[(G_{p-k})_{z}(z)dz+(G_{p-k})_{\overline{z}}(z)d\overline{z}]\right| , \\ I_{3}= & {} \left| \sum _{k=1}^{p-1}\int _{\Gamma }k G_{p-k}(z)(\overline{z}^{k}z^{k-1}dz+ \overline{z}^{k-1}z^{k}d\overline{z})\right| , \\ I_{4}= & {} \left| \int _{\Gamma }[(G_{p})_{z}(z)-(G_{p})_{z}(0)]dz+[(G_p)_{\overline{z}}(z)- (G_p)_{\overline{z}}(0)]d\overline{z}\right| . \end{aligned}$$

By a simple calculation, we have

$$\begin{aligned} I_{1}\ge \int _{\Gamma }\lambda _{G_p}(0)|dz|=\lambda _{G_p}(0)|z_{1}-z_{2}|= |z_{1}-z_{2}|. \end{aligned}$$

By Lemma 1.1, we have

$$\begin{aligned} I_{2}\le & {} \sum _{k=1}^{p-1}\int _{\Gamma }|z|^{2k}[|(G_{p-k})_{z}(z)||dz|+|(G_{p-k})_{\overline{z}}(z)||d\overline{z}|]\\\le & {} \sum _{k=1}^{p-1}r^{2k}\int _{\Gamma }\Lambda _{G_{p-k}}(z)|dz|\\\le & {} |z_{1}-z_{2}|\sum _{k=1}^{p-1}r^{2k}\frac{4M_{p-k}}{\pi (1-r^{2})}. \end{aligned}$$

By Lemma 1.2, we have

$$\begin{aligned} I_{3}\le & {} \sum _{k=1}^{p-1}\int _{\Gamma }|k G_{p-k}(z)|[|\overline{z}^{k}z^{k-1}||dz|+ |\overline{z}^{k-1}z^{k}||d\overline{z}|]\\\le & {} |z_{1}-z_{2}|\frac{8}{\pi (1-r)}\sum _{k=1}^{p-1}k M_{p-k}r^{2k}. \end{aligned}$$

By Lemma 1.3, we have

$$\begin{aligned} I_{4}\le & {} \int _{\Gamma }|(G_{p})_{z}(z)-(G_{p})_{z}(0)||dz|+|(G_{p})_{\overline{z}}(z)- (G_{p})_{\overline{z}}(0)||d\overline{z}|\\\le & {} |z_{1}-z_{2}|\sum _{n=2}^\infty n(|a_{n, p}|+|b_{n, p}|)r^{n-1}\\\le & {} |z_{1}-z_{2}|\sum _{n=2}^\infty r^{n-1}\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}=|z_{1}-z_{2}|\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}\frac{r}{1-r}. \end{aligned}$$

Using these estimates, we obtain that

$$\begin{aligned} |F(z_{1})-F(z_{2})|\ge I_{1}-I_{2} -I_{3}-I_{4}\ge |z_{1}-z_{2}|A(r), \end{aligned}$$

where

$$\begin{aligned} A(r)= & {} 1-\frac{4}{\pi (1-r^{2})}\sum _{k=1}^{p-1}M_{p-k}r^{2k}-\frac{8}{\pi (1-r)}\sum _{k=1}^{p-1}k M_{p-k}r^{2k}\\&- \frac{\Lambda _{p}^2-1}{\Lambda _{p}}\frac{r}{1-r}. \end{aligned}$$

It is not difficult to verify that A(r) is strictly decreasing in (0, 1), and

$$\begin{aligned} \lim _{r \rightarrow 0}A(r)=1,\quad \lim _{r \rightarrow 1}A(r)=-\infty . \end{aligned}$$

Hence there exists a unique root \(r_{0}\) in (0, 1) of the equation \(A(r)=0\). This shows that

$$\begin{aligned} |F(z_{1})-F(z_{2})|>0 \end{aligned}$$

for any two distinct points \(z_{1},z_{2}\) in \(|z|<r_{0}\), which proves the univalency of F in the disk \(\mathbb {D}_{r_{0}}\).

Finally, we consider any z with \(|z|=r_{0}\). Then we have

$$\begin{aligned} |F(z)|= & {} \left| \sum _{n=1}^{\infty }(a_{n, p}z^{n}+\overline{b_{n, p}}\overline{z}^{n})+\sum _{k=1}^{p-1}|z|^{2k}G_{p-k}(z)\right| \\\ge & {} |a_{1, p}z+\overline{b_{1, p}}\overline{z}|-\left| \sum _{n=2}^{\infty }(a_{n, p}z^{n}+\overline{b_{n, p}}\overline{z}^{n})\right| - \left| \sum _{k=1}^{p-1}|z|^{2k}G_{p-k}(z)\right| \\\ge & {} r_{0}-\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}\sum _{n=2}^{\infty }\frac{r_{0}^{n}}{n}-\sum _{k=1}^{p-1}r_{0}^{2k} \frac{4M_{p-k}r_{0}}{\pi (1-r_{0})}\\= & {} r_{0}+\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}[r_{0}+\ln (1-r_{0})]-\frac{4r_{0}}{\pi (1-r_{0})}\sum _{k=1}^{p-1}M_{p-k}r_{0}^{2k}\\= & {} R_{0}. \end{aligned}$$

So, the range \(F(\mathbb {D}_{r_0})\) contains a univalent disk \(\mathbb {D}_{R_0}\). The proof of this theorem is complete. \(\square \)

The Eq. (2.1) cannot be solved explicitly. The Computer Algebra System Mathematica has been manipulated to obtain the numerical solutions to Eqs. (2.1) and (2.2). Table 1 shows the approximate values of \(r_0, R_0\) that correspond to different choice of the constants \(M_1,\, M_2\) and \(\Lambda _3\).

Table 1 The values of \(r_0,R_0\) are in Theorem 2.1 when \(p=3\)

Setting \(p=2\) in Theorem 2.1, we have the following corollary, which is an improvement of Theorem D or Theorem 2.6 in [11].

Corollary 2.2

Let \(F(z)=|z|^2g(z)+h(z)\) be a biharmonic mapping of the unit disk \(\mathbb {D}\), with g(z), h(z) are harmonic on \(\mathbb {D}\) and \(F(0)=g(0)=h(0)=\lambda _{F}(0)-1=0\), \(|g(z)|\le M\) and \(\Lambda _{h}\le \Lambda \) for \(z\in \mathbb {D}\), where \(M\ge 0,\Lambda \ge 1\). Then F is univalent in the disk \(\mathbb {D}_{t_0}\), where \(t_0\) is the minimum positive root of the equation

$$\begin{aligned} 1-\frac{4M(3+2r)r^2}{\pi (1-r^2)}-\frac{(\Lambda ^2-1)r}{\Lambda (1-r)}=0, \end{aligned}$$
(2.3)

and \(F(\mathbb {D}_{t_0})\) contains a schlicht disk \(\mathbb {D}_{t_0'}\) with

$$\begin{aligned} t_0'=\left( 1+\Lambda -\frac{1}{\Lambda }\right) t_0-\frac{4Mt_0^3}{\pi (1-t_0)}+\left( \Lambda -\frac{1}{\Lambda }\right) \ln (1-t_0). \end{aligned}$$
(2.4)

Remark 2.3

Setting \(M=0\) in Corollary 2.2, we get Theorem 2.2 in [12].

The Eq. (2.3) cannot be solved explicitly. The Computer Algebra System Mathematica has calculated the numerical solutions to Eqs. (2.3), (2.4), (1.2) and (1.3). Table 2 shows the approximate values of \(t_0, \rho _4\) and \(t_0', \rho _4'\) that correspond to different choice of the constants M and \(\Lambda \), which shows that \(t_0>\rho _4\) and \(t_0'>\rho _4'\), that is, Corollary 2.2 is an improvement of Theorem D.

Table 2 The values of \(t_0,t_0'\) are in Corollary 2.2 and the values of \(\rho _4,\rho _4'\) are in Theorem D

Next, we derive another two new versions of Landau-type theorems of polyharmonic mappings as follows.

Theorem 2.4

Let \(F(z)=\sum _{k=1}^{p}|z|^{2(k-1)}G_{p-k+1}(z)\) be a polyharmonic mapping of \(\mathbb {D}\) satisfying \(F(0)=\lambda _{F}(0)-1=0\). Suppose that for each \(k\in \{1, 2, \ldots , p\}\), we have

  1. (i)

    \(G_{p-k+1}(z)\) is harmonic in \(\mathbb {D}\), and \(G_{p-k+1}(0)=0\);

  2. (ii)

    \(\Lambda _{G_{p-k+1}}(z)\le \Lambda _{p-k+1}\) for all \(z\in \mathbb {D}\), where \(\Lambda _{p-k+1}\ge 0,\, k=2, 3, \ldots , p\), and \(\Lambda _{p}\ge 1\).

Then there exists a positive number \(r_1\) such that F(z) is univalent in \(\mathbb {D}_{r_1}\), where \(r_1\) is a unique root in (0, 1) of the equation \(A_1(r)=0\) and

$$\begin{aligned} A_1(r)=1-\sum _{k=1}^{p-1}(2k+1) \Lambda _{p-k}r^{2k}-\frac{\Lambda _{p}^2-1}{\Lambda _{p}}\frac{r}{1-r}. \end{aligned}$$
(2.5)

Moreover, the range \(F(\mathbb {D}_{r_1})\) contains a univalent disk \(\mathbb {D}_{R_1}\), where

$$\begin{aligned} R_1=r_1+\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}[r_1+\ln (1-r_1)]-\sum _{k=1}^{p-1}\Lambda _{p-k}r_1^{2k+1}. \end{aligned}$$
(2.6)

Proof

For each \(k\in \{1,2,\ldots , p\}\), we may represent the harmonic functions \(G_{p-k+1}(z)\) in series form as

$$\begin{aligned} G_{p-k+1}(z)= & {} \sum _{j=1}^\infty a_{j, p-k+1}z^{j}+\sum _{j=1}^\infty \overline{b_{j, p-k+1}}\overline{z}^{j}, \\ ||a_{1, p}|-|b_{1, p}||= & {} \lambda _{F}(0)=||(G_p)_{z}(0)|-|(G_p)_{\overline{z}}(0)||=\lambda _{G_p}(0)=1. \end{aligned}$$

Now we fix r with \(0<r<1\), to prove the univalence of F, we choose two points \(z_{1},z_{2}\) in \(\mathbb {D}_{r}\). Let \(\Gamma =\{(z_{1}-z_{2})t+z_2:\, 0\le t \le 1\}\). Then as in the proof of Theorem 2.1, we have

$$\begin{aligned} |F(z_{1})-F(z_{2})|= & {} \left| \int _{\Gamma }F_{z}(z)dz+F_{\overline{z}}(z)d\overline{z}\right| \\\ge & {} I_{1}-I_{2}-I_{3}-I_{4}, \end{aligned}$$

where

$$\begin{aligned} I_{1}\ge \int _{\Gamma }\lambda _{G_p}(0)|dz|=\lambda _{G_p}(0)|z_{1}-z_{2}|= |z_{1}-z_{2}|, \end{aligned}$$

and

$$\begin{aligned} I_{2}\le & {} \sum _{k=1}^{p-1}\int _{\Gamma }|z|^{2k}[|(G_{p-k})_{z}(z)||dz|+|(G_{p-k})_{\overline{z}}(z)||d\overline{z}|]\\\le & {} \sum _{k=1}^{p-1}r^{2k}\int _{\Gamma }\Lambda _{G_{p-k}}(z)|dz|\\\le & {} |z_{1}-z_{2}|\sum _{k=1}^{p-1}\Lambda _{p-k}r^{2k}. \end{aligned}$$

By the condition (ii) of Theorem 2.4 and Lemma 1.4, we have

$$\begin{aligned} I_{3}\le & {} \sum _{k=1}^{p-1}\int _{\Gamma }|k G_{p-k}(z)|[|\overline{z}^{k}z^{k-1}||dz|+ |\overline{z}^{k-1}z^{k}||d\overline{z}|]\\\le & {} |z_{1}-z_{2}|\sum _{k=1}^{p-1}2k \Lambda _{p-k}r^{2k}. \end{aligned}$$

By Lemma 1.3, we have

$$\begin{aligned} I_{4}\le & {} \int _{\Gamma }|(G_{p})_{z}(z)-(G_{p})_{z}(0)||dz|+|(G_{p})_{\overline{z}}(z)- (G_{p})_{\overline{z}}(0)||d\overline{z}|\\\le & {} |z_{1}-z_{2}|\sum _{n=2}^\infty n(|a_{n, p}|+|b_{n, p}|)r^{n-1}\\\le & {} |z_{1}-z_{2}|\sum _{n=2}^\infty r^{n-1}\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}=|z_{1}-z_{2}|\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}\frac{r}{1-r}. \end{aligned}$$

Using these estimates, we obtain that

$$\begin{aligned}&|F(z_{1})-F(z_{2})|\ge I_{1}-I_{2} -I_{3}-I_{4}\\&\quad \ge |z_{1}-z_{2}|\left[ 1-\sum _{k=1}^{p-1}\Lambda _{p-k}r^{2k}-\sum _{k=1}^{p-1}2k \Lambda _{p-k}r^{2k}-\frac{\Lambda _{p}^2-1}{\Lambda _{p}}\frac{r}{1-r}\right] \\&\quad =|z_{1}-z_{2}|\left[ 1-\sum _{k=1}^{p-1}(2k+1) \Lambda _{p-k}r^{2k}-\frac{\Lambda _{p}^2-1}{\Lambda _{p}}\frac{r}{1-r}\right] . \end{aligned}$$

Let

$$\begin{aligned} A_1(r)=1-\sum _{k=1}^{p-1}(2k+1) \Lambda _{p-k}r^{2k}-\frac{\Lambda _{p}^2-1}{\Lambda _{p}}\frac{r}{1-r}. \end{aligned}$$

It is not difficult to verify that \(A_1(r)\) is strictly decreasing in (0, 1), and

$$\begin{aligned} \lim _{r \rightarrow 0}A_1(r)=1,\quad \lim _{r \rightarrow 1}A_1(r)=-\infty . \end{aligned}$$

Hence there exists a unique root \(r_1\) in (0, 1) of the equation \(A_1(r)=0\). This shows that

$$\begin{aligned} |F(z_{1})-F(z_{2})|>0 \end{aligned}$$

for any two distinct points \(z_{1},z_{2}\) in \(|z|<r_1\), which proves the univalence of F in the disk \(\mathbb {D}_{r_1}\).

Finally, we now consider any z with \(|z|=r_1\). Then we have

$$\begin{aligned} |F(z)|= & {} \left| \sum _{n=1}^{\infty }(a_{n, p}z^{n}+\overline{b_{n, p}}\overline{z}^{n})+\sum _{k=1}^{p-1}|z|^{2k}G_{p-k}(z)\right| \\\ge & {} |a_{1, p}z+\overline{b_{1, p}}\overline{z}|-\left| \sum _{n=2}^{\infty }(a_{n, p}z^{n}+\overline{b_{n, p}}\overline{z}^{n})\right| - \left| \sum _{k=1}^{p-1}|z|^{2k}G_{p-k}(z)\right| \\\ge & {} r_1-\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}\sum _{n=2}^{\infty }\frac{r_1^{n}}{n}-\sum _{k=1}^{p-1}\Lambda _{p-k}r_1^{2k+1}\\= & {} r_1+\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}[r_1+\ln (1-r_1)]-\sum _{k=1}^{p-1}\Lambda _{p-k}r_1^{2k+1}\\= & {} R_1. \end{aligned}$$

So, the range \(F(\mathbb {D}_{r_1})\) contains a univalent disk \(\mathbb {D}_{R_1}\). The proof of this theorem is complete. \(\square \)

By Lemma 1.4, we have

$$\begin{aligned} |G_{p-k+1}(z)|\le \Lambda _{p-k+1} |z|\le \Lambda _{p-k+1}. \end{aligned}$$

Thus applying Theorem 2.1 directly, we can get the following corollary.

Corollary 2.5

Let \(F(z)=\sum _{k=1}^{p}|z|^{2(k-1)}G_{p-k+1}(z)\) be a polyharmonic mapping of \(\mathbb {D}\) satisfying the hypothesis of Theorem 2.4. Then there exists a positive number \(r_1'\) such that F(z) is univalent in \(\mathbb {D}_{r_1'}\), where \(r_1'\) is a unique root in (0, 1) of the equation

$$\begin{aligned} A_1^{*}(r)= & {} 1-\frac{4}{\pi (1-r^{2})}\sum _{k=1}^{p-1}r^{2k}\Lambda _{p-k}-\frac{8}{\pi (1-r)}\sum _{k=1}^{p-1}k\Lambda _{p-k}r^{2k}\nonumber \\&- \frac{\Lambda _{p}^2-1}{\Lambda _{p}}\frac{r}{1-r}=0. \end{aligned}$$
(2.7)

Moreover, the range \(F(\mathbb {D}_{r_1'})\) contains a univalent disk \(\mathbb {D}_{R_1'}\), where

$$\begin{aligned} R_1'=r_1'+\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}[r_1'+\ln (1-r_1')]-\frac{4r_1'}{\pi (1-r_1')}\sum _{k=1}^{p-1}\Lambda _{p-k}r_1'^{2k}. \end{aligned}$$
(2.8)

The Eqs. (2.5) and (2.7) cannot be solved explicitly. The Computer Algebra System Mathematica has solved the numerical solutions to Eqs. (2.5)–(2.8) for \(p=2\). Table 3 shows the approximate values of \(r_1, r_1'\) and \(R_1, R_1'\) that correspond to different choice of the constants \(\Lambda _1\) and \(\Lambda _2\), which shows that \(r_1>r_1'\) and \(R_1>R_1'\), that is, Theorem 2.4 is an improvement of Corollary 2.5.

Table 3 The values of \(r_1,R_1\) are in Theorem 2.4 and the values of \(r_1',R_1'\) are in Corollary 2.5

The next theorem is different with Theorems 2.1 and 2.4, since \(\lambda _F(0)=0\).

Theorem 2.6

Let \(p\, (>1)\) be an integer and \(F(z)=|z|^{2(p-1)}G(z)\), where \(F(0)=G(0)=\lambda _{G}(0)-1=0\). Suppose that G(z) satisfies

  1. (i)

    G(z) is harmonic in D, and

  2. (ii)

    \(\Lambda _{G}(z)\le \Lambda \) for all \(z\in \mathbb {D}\), where \(\Lambda \ge {1}\).

Then there is a positive number \(r_2\) such that F is univalent in \(\mathbb {D}_{r_2}\), where \(r_2\) is a unique root in (0, 1) of the equation

$$\begin{aligned} B(r)=1+2\frac{\Lambda ^{2}-1}{\Lambda } \left[ \frac{\ln (1-r)}{r}+1\right] -\frac{\Lambda ^{2}-1}{\Lambda }\frac{r}{1-r}=0 \end{aligned}$$
(2.9)

for \(\Lambda >1\), and \(r_2=1\) for \(\Lambda =1\). Moreover, the range \(F(\mathbb {D}_{r_2})\) contains a univalent disk \(\mathbb {D}_{R_2}\), where

$$\begin{aligned} R_2=\left\{ \begin{array}{lll} r_2^{2p-1}\left[ 1+\frac{\Lambda ^{2}-1}{\Lambda }\left( \frac{\ln (1-r_2)}{r_2}+1\right) \right] , &{} \Lambda >1,\\ 1, &{}\Lambda =1. \end{array} \right. \end{aligned}$$
(2.10)

When \(\Lambda =1\), the above results are sharp.

Proof

We may represent the harmonic functions G(z) in the form as

$$\begin{aligned} G(z)=\sum _{n=1}^\infty a_{n}z^{n}+\sum _{n=1}^\infty \overline{b_{n}}\overline{z}^{n}. \end{aligned}$$

When \(\Lambda >1\), we fix r with \(0<r<1\), to prove the univalency of F, we choose two points \(z_{1},z_{2}\) in \(D_{r}\). Let \(\Gamma =\{z(t)=(z_{1}-z_{2})t+z_2:0\le t\le 1\}\). Then

$$\begin{aligned} |F(z_{1})-F(z_{2})|= & {} \left| \int _{\Gamma }F_{z}(z)dz+F_{\overline{z}}(z)d\overline{z}\right| \\\ge & {} I_{1}-I_{2}-I_{3}, \end{aligned}$$

where

$$\begin{aligned} I_{1}= & {} \left| \int _{\Gamma }(p-1)|z|^{2(p-1)}(G_{z}(0)dz+G_{\overline{z}}(0)d\overline{z})\right| , \\ I_{2}= & {} \left| \int _{\Gamma }(p-1)|z|^{2(p-1)} \left[ \frac{G(z)-z G_{z}(0)}{z}dz+\frac{G(z)-\overline{z}G_{\overline{z}}(0)}{\overline{z}}d \overline{z}\right] \right| , \\ I_{3}= & {} \left| \int _{\Gamma }(p-1)|z|^{2(p-1)} [(G_{z}-G_{z}(0))dz+(G_{\overline{z}}-G_{\overline{z}}(0))d\overline{z}]\right| . \end{aligned}$$

By a simple calculation, we have

$$\begin{aligned} I_{1}\ge & {} \int _{\Gamma }|(p-1)|z|^{2(p-1)}\lambda _{G}(0)||dz|\\= & {} \lambda _{G}(0)|z_{1}-z_{2}|\int _{0}^{1}(p-1)|z|^{2(p-1)}dt\\= & {} |z_{1}-z_{2}|\int _{0}^{1}(p-1)|z|^{2(p-1)}dt. \end{aligned}$$

By Lemma 1.3, we have

$$\begin{aligned} I_{2}\le & {} |z_{1}-z_{2}|\int _{0}^{1}(p-1)|z|^{2(p-1)}dt\,\left( 2\sum _{n=2}^\infty (|a_{n}|+|b_{n}|)r^{n-1}\right) \\\le & {} |z_{1}-z_{2}|\int _{0}^{1}(p-1)|z|^{2(p-1)}dt\, \left( 2\sum _{n=2}^\infty \frac{\Lambda ^{2}-1}{n\Lambda }r^{n-1}\right) \\\le & {} |z_{1}-z_{2}|\int _{0}^{1}(p-1)|z|^{2(p-1)}dt\, 2\frac{\Lambda ^{2}-1}{\Lambda }\left[ -\left( \frac{\ln (1-r)}{r}+1\right) \right] ,\\ I_{3}\le & {} |z_{1}-z_{2}|\int _{0}^{1}(p-1)|z|^{2(p-1)}dt\left( \sum _{n=2}^\infty n(|a_{n}|+|b_{n}|)r^{n-1}\right) \\\le & {} |z_{1}-z_{2}|\int _{0}^{1}(p-1)|z|^{2(p-1)}dt\cdot \frac{\Lambda ^{2}-1}{\Lambda }\sum _{n=2}^\infty r^{n-1}\\= & {} |z_{1}-z_{2}|\int _{0}^{1}(p-1)|z|^{2(p-1)}dt\cdot \frac{\Lambda ^{2}-1}{\Lambda }\frac{r}{1-r}. \end{aligned}$$

Using these estimates, we obtain:

$$\begin{aligned} |F(z_{1})-F(z_{2})|\ge & {} I_{1}-I_{2}-I_{3}\\\ge & {} |z_{1}-z_{2}|\int _{0}^{1}(p-1)|z(t)|^{2(p-1)}dt\\&\cdot \left[ 1+2\frac{\Lambda ^{2}-1}{\Lambda } \left( \frac{\ln (1-r)}{r}+1\right) -\frac{\Lambda ^{2}-1}{\Lambda }\frac{r}{1-r}\right] . \end{aligned}$$

Let

$$\begin{aligned} B(r)=1+2\frac{\Lambda ^{2}-1}{\Lambda } \left( \frac{\ln (1-r)}{r}+1\right) -\frac{\Lambda ^{2}-1}{\Lambda }\frac{r}{1-r}. \end{aligned}$$
(2.11)

It is not difficult to verify that B(r) is strictly decreasing in (0, 1), and

$$\begin{aligned} \lim _{r \rightarrow 0}B(r)=1,\quad \lim _{r \rightarrow 1}B(r)=-\infty \end{aligned}$$
(2.12)

Hence there exists a unique root \(r_2\) in (0, 1) of the equation \(B(r)=0\).

On the other hand, by Lemma 1.5, we have

$$\begin{aligned} \int _{0}^{1}(p-1)|z(t)|^{2(p-1)}dt\ge \frac{p-1}{2p-1}\cdot \frac{|z_1|^{2p-1}+|z_2|^{2p-1}}{|z_1|+|z_2|}>0 \end{aligned}$$

for any two distinct points \(z_{1},z_{2}\) in \(|z|<r_2\). This shows that

$$\begin{aligned} |F(z_{1})-F(z_{2})|>0 \end{aligned}$$

for any two distinct points \(z_{1},z_{2}\) in \(|z|<r_2\), which proves the univalency of F in the disk \(\mathbb {D}_{r_2}\).

Finally, we consider any z with \(|z|=r_2\).Then we have

$$\begin{aligned} |F(z)|= & {} ||z|^{2(p-1)}G(z)|\\= & {} r_2^{2p-2}\left| \sum _{n=1}^\infty a_{n}z^{n}+\sum _{n=1}^\infty \overline{b_{n}}\overline{z}^{n}\right| \\\ge & {} r_2^{2p-2}\left[ |a_{1}z+\overline{b_{1}}\overline{z}|-\right| \sum _{n=2}^\infty a_{n}z^{n}+\sum _{n=2}^\infty \overline{b_{n}}\overline{z}^{n}\left| \right] \\\ge & {} r_2^{2p-1}\left[ 1+\frac{\Lambda ^{2}-1}{\Lambda }\left( \frac{\ln (1-r_2)}{r_2}+1\right) \right] . \end{aligned}$$

So, the range \(F(\mathbb {D}_{r_2})\) contains a univalent disk \(\mathbb {D}_{R_2}\), where \(R_2\) is defined by (2.10).

When \(\Lambda =1\), by Lemma 1.3, we know that \(G(z)=a_{1}z+\overline{b_{1}}\overline{z}\) with \(||a_{1}|-|b_{1}||=1\). From \(1=\lambda _{G}(0)\le \Lambda _{G}(0)\le \Lambda =1\), we obtain that \(\Lambda _{G}(0)=|a_{1}|+|b_{1}|=1\), so that \(||a_{1}|-|b_{1}||=|a_{1}|+|b_{1}|=1\), thus we have \(|a_{1}|=1\), \(b_{1}=0\), or \(|b_{1}|=1,a_{1}=0\).

When \(F(z)=|z|^{2(p-1)}a_{1}z\) with \(|a_{1}|=1\), we choose two distinct points \(z_{1},z_{2}\) in \(\mathbb {D}_{r}\, (0<r<1)\), we have

$$\begin{aligned} |F(z_{1})-F(z_{2})|= & {} ||z_{1}|^{2(p-1)}a_{1}z_{1}-|z_{2}|^{2(p-1)}a_{1}z_{2}|\\= & {} |a_{1}|||z_{1}|^{2(p-1)}z_{1}-|z_{2}|^{2(p-1)}z_{2}|\\= & {} ||z_{1}|^{2(p-1)}z_{1}-|z_{2}|^{2(p-1)}z_{2}|. \end{aligned}$$

We split into two cases to verify that \(F(z_{1})\ne F(z_{2})\).

  1. (i)

    If \(|z_{1}|\ne |z_{2}|\), then we have

    $$\begin{aligned} |F(z_{1})-F(z_{2})|=||z_{1}|^{2(p-1)}z_{1}-|z_{2}|^{2(p-1)}z_{2}|\ge |||z_{1}|^{2p-1}-|z_{2}|^{2p-1}||>0, \end{aligned}$$
  2. (ii)

    If \(|z_{1}|=|z_{2}|, -\pi <\arg z_{1},\arg z_{2}\le \pi ,\, \arg z_{1}\ne \arg z_{2}\), then we have

    $$\begin{aligned} |F(z_{1})-F(z_{2})|= & {} ||z_{1}|^{2(p-1)}z_{1}-|z_{2}|^{2(p-1)}z_{2}|\\= & {} ||z_{1}|^{2p-1}e^{i\arg z_{1}}-|z_{2}|^{2p-1}e^{i\arg z_{2}}|\\= & {} |z_{1}|^{2p-1}\cdot |e^{i(\arg z_{1}-\arg z_2)}-1|>0. \end{aligned}$$

So \(F(z_{1})\ne F(z_{2})\), hence F(z) is univalent on \(\mathbb {D}\), and \(F(\mathbb {D})=\mathbb {D}\).

Similarly, when \(F(z)=|z|^{2(p-1)}\overline{b_{1}}\overline{z}\) with \(|b_{1}|=1\), we may prove that F(z) is univalent on \(\mathbb {D}\), and \(F(\mathbb {D})=\mathbb {D}\). That is, \(r_2=R_2=1\) for \(\Lambda =1\). It is evident that these results of this case are sharp. The proof of this theorem is complete. \(\square \)

Remark 2.7

Setting \(p=2\) in Theorem 2.6, we get Theorem 3.3 of [15], when \(p\ge 3\), the results in Theorem 2.6 are new.

Finally, we establish three new versions of Landau-type theorems of log-p-harmonic mappings as follows.

Theorem 2.8

Let \(f(z)=\prod _{k=1}^{p}(g_{p-k+1}(z))^{|z|^{2(k-1)}}\) be a log-p-harmonic mapping of \(\mathbb {D}\) satisfying \(f(0)=g_{p}(0)=\lambda _{f}(0)=1\). Suppose that for each \(k\in \{1,\ldots , p\}\), we have

  1. (i)

    \(g_{p-k+1}(z)\) is log-harmonic in \(\mathbb {D}\), and

  2. (ii)

    \(|g_{p-k+1}(z)|\le {M_{p-k+1}}\), let \(G_{p}=\log g_{p}\), and \(\Lambda _{G_{p}}\le {\Lambda _{p}}\), where \(M_{p-k+1}\ge {1}\), \(\Lambda _{p}\ge {1}\).

Then there is a positive number \(r_3\) such that f is univalent in \(\mathbb {D}_{r_3}\), where \(r_3\)\((0<r_3<1)\) satisfies the following equation

$$\begin{aligned}&1-\frac{4}{\pi (1-r^{2})}\sum _{k=1}^{p-1}r^{2k}M_{p-k}^{*}-\sum _{k=1}^{p-1}kM_{p-k}^{*}r^{2k}\frac{8}{\pi (1-r)}\nonumber \\&\quad - \frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}\frac{r}{1-r}=0, \end{aligned}$$
(2.13)

where \(M_{p-k+1}^{*}=\log M_{p-k+1}+\pi ,\, k=2, 3, \ldots , p\). Moreover, the range \(F(\mathbb {D}_{r_3})\) contains a univalent disk \(\mathbb {D}(z_3, R_3)\), where

$$\begin{aligned} z_3= & {} \cosh \bigg (\frac{R_3'}{\sqrt{2}}\bigg ),\quad \rho _{0}=\min {\bigg \{\sinh \bigg (\frac{R_3'}{\sqrt{2}}\bigg )}, {\cosh \bigg (\frac{R_3'}{\sqrt{2}}\bigg )\sin \bigg (\frac{R_3'}{\sqrt{2}}\bigg )}\bigg \},\qquad \end{aligned}$$
(2.14)
$$\begin{aligned} R_3'= & {} r_3+\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}[r_3+\ln (1-r_3)]-\sum _{k=1}^{p-1}r_3^{2k} \frac{4M_{p-k}^{*}r_3}{\pi (1-r_3)}. \end{aligned}$$
(2.15)

Proof

Let \(F(z)=\sum _{k=1}^{p}|z|^{2(k-1)}G_{p-k+1}(z)\), for each \(k\in \{1,\ldots , p\}\). We may represent the harmonic functions \(G_{p-k+1}(z)=\log g_{p-k+1}\) in series form as

$$\begin{aligned} G_{p-k+1}(z)=\sum _{n=1}^\infty a_{j, p-k+1}z^{j}+\sum _{n=1}^\infty \overline{b_{j, p-k+1}}\overline{z}^{j}. \end{aligned}$$

Then \(F=\log f\) is a polyharmonic mapping in \(\mathbb {D}\).

We know that

$$\begin{aligned} \lambda _{f}(0)=||f_{z}(0)|-|f_{\overline{z}}(0)||=|f(0)|||F_{z}(0)|-|F_{\overline{z}}(0)||, \end{aligned}$$

and \(f(0)=1\), so it follows from \(g_{p}(0)=\lambda _{f}(0)=1\), we have \(G_{p}(0)=\lambda _{F}(0)-1=0\).

It is obvious that

$$\begin{aligned} |G_{p-k+1}|=|\log g_{p-k+1}|=|\log |g_{p-k+1}|+i \arg g_{p-k+1}|\le |\log |g_{p-k+1}||+\pi , \end{aligned}$$

so we have

$$\begin{aligned} |G_{p-k+1}|\le \log M_{p-k+1}+\pi =M_{p-k+1}^{*}. \end{aligned}$$

In order to prove the univalence of f, we fix r with \(0<r<1\), we choose two points \(z_{1},z_{2}\) in \(\mathbb {D}_{r}\). Let \(\Gamma =\{(z_{1}-z_{2})t+z_2:0\le t\le 1\}\), then it follows from Theorem 2.1, we have

$$\begin{aligned} |\log f(z_{1})-\log f(z_{2})|= & {} |F(z_{1})-F(z_{2})|\\= & {} \left| \int _{\Gamma }F_{z}(z)dz+F_{\overline{z}}(z)d\overline{z}\right| \\\ge & {} |z_{1}-z_{2}|\left[ 1-\frac{4}{\pi (1-r^{2})}\sum _{k=1}^{p-1}r^{2k}M_{p-k}^{*}\right. \\&\left. \quad -\frac{8}{\pi (1-r)}\sum _{k=1}^{p-1}k M_{p-k}^{*}r^{2k}- \frac{\Lambda _{p}-1}{\Lambda _{p}}\frac{r}{1-r}\right] . \end{aligned}$$

We know from the proof of Theorem 2.1 that there is a unique \(r_3 \in (0, 1)\) satisfying Eq. (2.13), such that

$$\begin{aligned}|\log f(z_{1})-\log f(z_{2})|> 0\end{aligned}$$

for any two distinct points \(z_{1},z_{2}\) in \(|z|<r_3\), which proves the univalency of f in the disk \(\mathbb {D}_{r_{2}}\).

Finally, we consider any z with \(|z|=r_3\), then we have

$$\begin{aligned} |\log f(z)|= & {} |F(z)|=\left| \sum _{n=1}^{\infty }(a_{n, p}z^{n}+\overline{b_{n, p}}\overline{z}^{n})+\sum _{k=1}^{p-1}|z|^{2k}G_{p-k}(z)\right| \\\ge & {} |a_{1, p}z+b_{1, p}\overline{z}|-\left| \sum _{n=2}^{\infty }(a_{n, p}z^{n}+\overline{b_{n, p}}\overline{z}^{n})\right| - \left| \sum _{k=1}^{p-1}|z|^{2k}G_{p-k}(z)\right| \\\ge & {} r_3-\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}\sum _{n=2}^{\infty }\frac{r_3^{n}}{n}-\sum _{k=1}^{p-1}r_3^{2k} \frac{4M_{p-k}^{*}r_3}{\pi (1-r_3)}\\= & {} R_3', \end{aligned}$$

where

$$\begin{aligned} R_3'=r_3+\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}[r_3+\ln (1-r_3)]-\sum _{k=1}^{p-1}r_3^{2k} \frac{4M_{p-k}^{*}r_3}{\pi (1-r_3)}, \end{aligned}$$

the properties of the exponential function \(e^{z}\) shows the \(f(\mathbb {D}_{r_3})\) contains a disk \(\mathbb {D}(z_3, R_3)\), where \(z_3\) and \(R_3\) are defined by (2.14) and (2.15). The proof of this theorem is complete. \(\square \)

By means of Theorem 2.4, applying the same method as in our proof of Theorem 2.8, we have the following theorem.

Theorem 2.9

Let \(f(z)=\prod _{k=1}^{p}(g_{p-k+1}(z))^{|z|^{2(k-1)}}\) be a log-p-harmonic mapping of \(\mathbb {D}\) satisfying \(f(0)=\lambda _{f}(0)=1\). Suppose that for each \(k\in \{1,\ldots , p\}\), we have

  1. (i)

    \(g_{p-k+1}(z)\) is log-harmonic in \(\mathbb {D}\), and \(g_{p-k+1}(0)=1\);

  2. (ii)

    let \(G_{p-k+1}=\log g_{p-k+1}\), and \(\Lambda _{G_{p-k+1}}(z)\le {\Lambda _{p-k+1}}\) for all \(z\in \mathbb {D}\), where \(\Lambda _{p-k+1}\ge 1\).

Then there is a positive number \(r_{2}\) such that f is univalent in \(\mathbb {D}_{r_4}\), where \(r_4\)\((0<r_4<1)\) satisfies the following equation

$$\begin{aligned} 1-\sum _{k=1}^{p-1}(2k+1) \Lambda _{p-k}r^{2k}-\frac{\Lambda _{p}^2-1}{\Lambda _{p}}\frac{r}{1-r}=0. \end{aligned}$$
(2.16)

Moreover, the range \(F(\mathbb {D}_{r_4})\) contains a univalent disk \(\mathbb {D}(z_4, R_4)\), where

$$\begin{aligned} z_4= & {} \cosh \bigg (\frac{R_4'}{\sqrt{2}}\bigg ),\nonumber \\ R_4= & {} \min {\bigg \{\sinh \bigg (\frac{R_4'}{\sqrt{2}}\bigg )}, {\cosh \bigg (\frac{R_4'}{\sqrt{2}}\bigg )\sin \bigg (\frac{R_4'}{\sqrt{2}}\bigg )}\bigg \}, \end{aligned}$$
(2.17)
$$\begin{aligned} R_4'= & {} r_4+\frac{\Lambda _{p}^{2}-1}{\Lambda _{p}}[r_4+\ln (1-r_4)]-\sum _{k=1}^{p-1}\Lambda _{p-k}r_4^{2k+1}. \end{aligned}$$
(2.18)

By means of Theorem 2.6, applying the same method as in our proof of Theorem 2.8, we have the following theorem.

Theorem 2.10

Let \(f(z)=g(z)^{|z|^{2(p-1)}}\) be a log-p-harmonic mapping of \(\mathbb {D}\) satisfying \(f(0)=g(0)=\lambda _{g}(0)=1\). Suppose that

  1. (i)

    g(z) is log-harmonic in \(\mathbb {D}\);

  2. (ii)

    let \(G(z)=\log g(z)\), and \(\Lambda _{G}\le \Lambda \) . Then there is a positive number \(r_5\) such that f is univalent in \(\mathbb {D}_{r_5}\), where \(r_5\) is a unique root in (0, 1) of the equation

    $$\begin{aligned} B(r)=1+2\frac{\Lambda ^{2}-1}{\Lambda }\left[ \frac{\ln (1-r)}{r}+1\right] -\frac{\Lambda ^{2}-1}{\Lambda }\frac{r}{1-r}=0 \end{aligned}$$
    (2.19)

    for \(\Lambda >1\), and \(r_5=1\) for \(\Lambda =1\). Moreover, the range \(f(\mathbb {D}_{r_5})\) contains a univalent disk \(\mathbb {D}(z_5, R_5')\), where

    $$\begin{aligned} z_5= & {} \cosh \left( \frac{R_5}{\sqrt{2}}\right) ,\nonumber \\ R_5'= & {} \min {\bigg \{\sinh \bigg (\frac{R_5}{\sqrt{2}}\bigg )}, {\cosh \bigg (\frac{R_5}{\sqrt{2}}\bigg )\sin \bigg (\frac{R_5}{\sqrt{2}}\bigg )}\bigg \}, \end{aligned}$$
    (2.20)
    $$\begin{aligned} R_5= & {} \left\{ \begin{array}{lll} r_5^{2p-1}\left[ 1+\frac{\Lambda ^{2}-1}{\Lambda }\left( \frac{\ln (1-r_2)}{r_2}+1\right) \right] , &{} \Lambda >1,\\ 1, &{}\Lambda =1. \end{array} \right. \end{aligned}$$
    (2.21)