Skip to main content
Log in

Enhanced visible-light photocatalytic activity of a g-C3N4/m-LaVO4 heterojunction: band offset determination

g-C3N4/m-LaVO4异质结增强的可见光催化性能研究:基于能带偏移的调控

  • Article
  • Chemistry
  • Published:
Science Bulletin

Abstract

Band offset is a dominant factor affecting the photocatalytic performance of heterostructure photocatalysts. Therefore, controlling the band gap structure of semiconductors is a key challenge in the development of efficient photocatalysts. We used a typical in situ-method to prepare diverse graphite-phase carbon nitride (g-C3N4) samples from melamine, thiourea, and a mixture thereof, and found that they exhibited band gaps between 2.3–2.8 eV. From UV–Vis spectra and X-ray photoelectron spectroscopy measurements, we determined that the g-C3N4 samples exhibited different band gap values and valence band positions. On this basis, we constructed g-C3N4/m-LaVO4 heterojunctions with different band offsets. UV–Vis spectra and X-ray photoelectron spectroscopy measurements revealed that the valence band offsets (VBOs) of the different heterojunctions were similar, but their conduction band offsets (CBOs) were significantly different. Photocatalytic experiments revealed that the reaction rate was enhanced with an increase in the CBO value. Furthermore, the three-phase g-C3N4/g-C3N4/m-LaVO4 heterojunction composed of m-LaVO4 and mixed g-C3N4 showed the highest photocatalytic activity, which was mainly due to the construction of a multilevel structure. This work investigates the influence of the band offset on heterojunction photoelectrochemical properties and provides a new strategy to improve the photocatalytic activity by constructing multilevel structures.

摘要

能带偏移是影响异质结光催化剂光催化性能的一个重要因素。因此,通过控制半导体的能带结构是发展有效光催化剂的一个重要挑战。我们利用一种典型的原位法通过三聚氰胺、硫脲以及两者混合物制备得到了不同的g-C3N4样品,并发现它们的带隙值在2.3–2.8 eV。通过UV–Vis漫反射光谱和X射线光电子能谱分析,发现g-C3N4样品具有不同的带隙值和价带位置。基于此,本文构建了具有不同能级偏移的g-C3N4/m-LaVO4异质结。UV–Vis光谱和X射线光电子能谱分析表明不同异质结的价带偏移相似,但是他们的导带偏移具有明显的不同。光催化实验表明,反应速率随着导带能级偏移(CBO)值的增加而加强。此外,由m-LaVO4和混合相g-C3N4构成的g-C3N4/g-C3N4/m-LaVO4三相异质结显示出最高的光催化性能,这主要是因为多级结构的构建。这个工作主要研究了能带偏移对异质结光电化学性能的影响,并提供了一种通过构建多级结构来提高光催化性能的新手段。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  2. Long MC, Cai WM, Cai J et al (2006) Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J Phys Chem B 110:20211–20216

    Article  Google Scholar 

  3. Kim YJ, Gao BF, Han SY et al (2009) Heterojunction of FeTiO3 nanodisc and TiO2 nanoparticle for a novel visible light photocatalyst. J Phys Chem C 113:19179–19184

    Article  Google Scholar 

  4. Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901

    Article  Google Scholar 

  5. Zong X, Yan HJ, Wu GP et al (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177

    Article  Google Scholar 

  6. Wang H, Zhang L, Chen Z et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244

    Article  Google Scholar 

  7. Li P, Zhao X, Jia CJ et al (2013) ZnWO4/BiOI Heterostructures with highly efficient visible light photocatalytic activity: the case of interface lattice and energy level match. J Mater Chem A 1:3421–3429

    Article  Google Scholar 

  8. Li TB, Chen G, Zhou C et al (2011) New photocatalys BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans 40:6751–6758

    Article  Google Scholar 

  9. Chen C, Cai W, Long M et al (2010) Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 11:6425–6432

    Article  Google Scholar 

  10. Chai SY, Kim YJ, Jung MH et al (2009) Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal 262:144–149

    Article  Google Scholar 

  11. Liu G, Niu P, Sun C et al (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648

    Article  Google Scholar 

  12. Dong F, Zhao ZW, Xiong T et al (2013) In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. Appl Mater Interfaces 5:11392–11401

    Article  Google Scholar 

  13. Khanchandani S, Srivastava PK, Kumar S et al (2014) Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag2S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis. Inorg Chem 53:8902–8912

    Article  Google Scholar 

  14. Wang J, Liu XL, Yang AL et al (2011) Measurement of wurtzite ZnO/rutile TiO2 heterojunction band offsets by X-ray photoelectron spectroscopy. Appl Phys A 103:1099–1103

    Article  Google Scholar 

  15. Chambers SA, Ohsawa T, Wang CM et al (2009) Band offsets at the epitaxial anatase TiO2/n-SrTiO3(001) interface. Surf Sci 603:771–780

    Article  Google Scholar 

  16. Chen CH, Jay Shieh J, Liao HY et al (2014) Construction of titania-ceria nanostructured composites with tailored heterojunction for photocurrent enhancement. J Eur Ceramic Soc 34:1523–1535

    Article  Google Scholar 

  17. Wang XC, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  Google Scholar 

  18. Zhang MW, Wang XC (2014) Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy Environ Sci 7:1902–1906

    Article  Google Scholar 

  19. Martin DJ, Reardon PJT, Moniz SJA et al (2014) Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J Am Chem Soc 136:12568–12571

    Article  Google Scholar 

  20. Maeda K, Wang XC, Nishihara Y et al (2009) Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J Phys Chem C 113:4940–4947

    Article  Google Scholar 

  21. Pan CS, Xu J, Wang YJ et al (2012) Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv Funct Mater 22:1518–1524

    Article  Google Scholar 

  22. Wang XC, Maeda K, Chen XF et al (2009) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681

    Article  Google Scholar 

  23. Niu P, Zhang LL, Liu G et al (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  Google Scholar 

  24. Zheng Y, Lin LH, Wang B et al (2015) Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chem Int Ed 54:12868–12884

    Article  Google Scholar 

  25. Zhang JS, Chen Y, Wang XC (2015) Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ Sci 8:3092–3108

    Article  Google Scholar 

  26. Zheng DD, Pang CY, Wang XC (2015) The function-led design of Z-scheme photocatalytic systems based on hollow carbon nitride semiconductors. Chem Commun 51:17467–17470

    Article  Google Scholar 

  27. Zheng DD, Pang CY, Wang XC (2015) The function-led design of Z-scheme photocatalytic systems based on hollow carbon nitride semiconductors. Chem Commun 51:17467–17470

    Article  Google Scholar 

  28. Zhang GG, Li GS, Wang XC (2015) Surface modification of carbon nitride polymers by core–shell nickel/nickel oxide cocatalysts for hydrogen evolution photocatalysis. ChemCatChem 7:2864–2870

    Article  Google Scholar 

  29. Zheng DD, Huang CJ, Wang XC (2015) Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis. Nanoscale 7:465–470

    Article  Google Scholar 

  30. Ye XJ, Cui YJ, Wang XC (2014) Ferrocene-modified carbon nitride for direct oxidation of benzene to phenol with visible light. Chem Sus Chem 7:738–742

    Article  Google Scholar 

  31. Zhang JS, Zhang MW, Lin S et al (2014) Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity. J Catal 310:24–30

    Article  Google Scholar 

  32. Chen Y, Zhang JS, Zhang MW et al (2013) Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light. Chem Sci 4:3244–3248

    Article  Google Scholar 

  33. Zhang GG, Zang SH, Lan ZA et al (2015) Cobalt selenide: a versatile cocatalyst for photocatalytic water oxidation with visible light. J Mater Chem A 3:17946–17950

    Article  Google Scholar 

  34. Zheng DD, Zhang GG, Wang XC (2015) Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. Appl Catal B Environ 179:479–488

    Article  Google Scholar 

  35. Zhang GG, Lan ZA, Wang XC (2015) Merging surface organometallic chemistry with graphitic carbon nitride photocatalysis for CO2 photofixation. ChemCatChem 7:1422–1423

    Article  Google Scholar 

  36. Zhang GG, Zang SH, Wang XC (2015) Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation. ACS Catal 5:941–947

    Article  Google Scholar 

  37. Zhang MW, Luo ZS, Zhou M et al (2015) Photocatalytic water oxidation by layered Co/h-BCN hybrids. Sci China Mater 58:867–876

    Article  Google Scholar 

  38. Zhang JS, Zhang MW, Lin LH et al (2015) Sol processing of conjugated carbon nitride powders for thin-film fabrication. Angew Chem Int Ed 54:6297–6301

    Article  Google Scholar 

  39. Chen Y, Wang B, Lin S et al (2014) Activation of n → π* transitions in two-dimensional conjugated polymers for visible light photocatalysis. J Phys Chem C 118:29981–29989

    Article  Google Scholar 

  40. Qin JN, Wang SB, Ren H et al (2015) Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl Catal B Environ 179:1–8

    Article  Google Scholar 

  41. Chang F, Xie YC, Li CL et al (2013) A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue. Appl Surf Sci 280:967–974

    Article  Google Scholar 

  42. Long BH, Lin JL, Wang XC (2014) Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J Mater Chem A 2:2942–2951

    Article  Google Scholar 

  43. Miller DR, Wang J, Gillan EG (2002) Rapid, facile synthesis of nitrogen-rich carbon nitride powders. J Mater Chem 12:2463–2469

    Article  Google Scholar 

  44. Zhang GG, Zhang JS, Zhang MW et al (2012) Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem 22:8083–8091

    Article  Google Scholar 

  45. Dong F, Wu LW, Sun YJ et al (2011) Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem 21:15171–15174

    Article  Google Scholar 

  46. Cui YJ, Zhang JS, Zhang GG et al (2011) Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J Mater Chem 21:13032–13039

    Article  Google Scholar 

  47. Zhang JS, Zhang MW, Zhang GG et al (2012) Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal 2:940–948

    Article  Google Scholar 

  48. Zou XJ, Li XY, Zhao QD et al (2012) Synthesis of LaVO4/TiO2 heterojunction nanotubes by sol–gel coupled with hydrothermal method for photocatalytic air purification. J Colloid Interface Sci 383:13–18

    Article  Google Scholar 

  49. Liu JF, Chen W, Liu XW et al (2008) Au/LaVO4 nanocomposite: preparation, characterization, and catalytic activity for CO oxidation. Nano Res 1:46–55

    Article  Google Scholar 

  50. He YM, Cai J, Zhang LH et al (2014) Comparing two new composite photocatalysts, t-LaVO4/g-C3N4 and m-LaVO4/g-C3N4, for their structures and performances. Ind Eng Chem Res 53:5905–5915

    Article  Google Scholar 

  51. Fan WL, Song XY, Bu YX et al (2006) Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals. J Phys Chem B 110:23247–23254

    Article  Google Scholar 

  52. Long YT, Kong C, Li DW et al (2011) Ultrasensitive determination of cysteine based on the photocurrent of nafion-functionalized CdS–MV quantum dots on an ITO electrode. Small 7:1624–1628

    Article  Google Scholar 

  53. Li XF, Zhang J, Shen LH et al (2009) Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl Phys A Mater Sci Process 94:387–392

    Article  Google Scholar 

  54. Zhao YC, Yu DL, Zhou HW et al (2005) Turbostratic carbon nitride prepared by pyrolysis of melamine. J Mater Sci 40:2645–2647

    Article  Google Scholar 

  55. Liu L, Ma D, Zheng H et al (2008) Synthesis and characterization of microporous carbon nitride. Microporous Mesoporous Mater 110:216–222

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21173131) and the Taishan Scholar Project of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiliu Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25783 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Qin, H. & Fan, W. Enhanced visible-light photocatalytic activity of a g-C3N4/m-LaVO4 heterojunction: band offset determination. Sci. Bull. 61, 645–655 (2016). https://doi.org/10.1007/s11434-016-1053-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1053-7

Keywords

关键词

Navigation