Skip to main content
Log in

An observational study of snow aging and the seasonal variation of snow albedo by using data from Col de Porte, France

  • Article
  • Atmospheric Science
  • Published:
Chinese Science Bulletin

Abstract

An 18-year long (1993–2011) comprehensive dataset of snow and meteorological variables from Col de Porte, France is used to analyze the variation of shortwave broadband albedo with elapsed time after snowfalls (snow aging) during each snow season. The effects of air temperature, snow surface temperature and snow depth on snow albedo are investigated. An index based on the accumulation of air temperature over several consecutive days with daily mean higher than 2.5 °C is proposed to divide each snow-covered period into a dry and the following wet snow season when this index reaches 18 °C. The results indicate that snow surface albedo decreases exponentially with time in both dry and wet snow seasons. Snow albedo reduction with snow aging is small at low surface temperature and the reduction rate increases with the rise of surface temperature. However, the reduction rate is widely scattered within the observed range of temperature, implying a loose relationship between snow albedo and snow surface temperature. Snow albedo in wet snow season is generally smaller and decreases faster than in dry snow season. For Col de Porte site, snow depths to effectively mask the underlying surface are 21 and 33 cm in dry and wet snow season respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jordan R (1991) A one-dimensional temperature model for a snow cover: technical documentation for SNTHERM.89. Special report 91-16, USA Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

  2. Sun SF, Jin JM, Xue YK (1999) A simple snow-atmosphere soil transfer model. J Geophys Res 104:587–597

    Google Scholar 

  3. Slater AG, Schlosser CA, Desborough CE et al (2001) The representation of snow in land-surface schemes: results from PILPS 2(d). J Hydrometeorol 2:7–25

    Article  Google Scholar 

  4. Wang Z, Zeng X (2010) Evaluation of snow albedo in land models for weather and climate studies. J Appl Meteorol Climatol 49:363–380

    Article  Google Scholar 

  5. Cess RD, Potter GL, Blanchet JP et al (1991) Intercomparison and interpretation of snow climate feedback processes in seventeen atmospheric general circulation models. Science 253:888–892

    Article  Google Scholar 

  6. Slater AG, Pitman AJ, Desborough CE (1998) The validation of a snow parameterization designed for use in general circulation models. Int J Climatol 18:595–617

    Article  Google Scholar 

  7. Nolin A, Stroeve J (1997) The changing albedo of the Greenland ice sheet: implications for climate change. Ann Glaciol 25:51–57

    Google Scholar 

  8. Klok EJ, Oerlemans J (2004) Modeled climate sensitivity of the mass balance of Morteratschgletscher and its dependence on albedo parameterization. Int J Climatol 24:231–245

    Article  Google Scholar 

  9. Xue YK, Sun SF, Kahan D et al (2003) Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites. J Geophys Res 108:8859. doi:10.1029/2002JD003174

    Article  Google Scholar 

  10. Solomon S, Qin DH, Manning M et al (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  11. Curry JA, Schramm JL, Ebert EE (1995) On the sea ice albedo climate feedback mechanism. J Clim 8:240–247

    Article  Google Scholar 

  12. Curry JA, Schramm JL, Perovich DK et al (2001) Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J Geophys Res 106:15345–15355

    Article  Google Scholar 

  13. Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. I: pure snow. J Atmos Sci 37:2712–2733

    Article  Google Scholar 

  14. Warren SG, Wiscombe WJ (1980) A model for the spectral albedo of snow. II: snow containing atmospheric aerosols. J Atmos Sci 37:2734–2745

    Article  Google Scholar 

  15. Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci USA 101:423–428

    Article  Google Scholar 

  16. Molga M (1962) Agricultural meteorology part II: outline of agrometeorological problems. National Science Foundation, Warsaw

    Google Scholar 

  17. Baker DG (1991) Snow depth required to mask the underlying surface. J Appl Meteorol 30:387–392

    Article  Google Scholar 

  18. Grenfell TC, Warren SG, Mullen PC (1994) Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J Geophys Res 99:18669–18684

    Article  Google Scholar 

  19. Aoki T, Fukabori M, Hachikubo A et al (2000) Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface. J Geophys Res 105:10219–10236

    Article  Google Scholar 

  20. Toon OB, McKay CP, Ackerman TP et al (1989) Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J Geophys Res 94:16287–16301

    Article  Google Scholar 

  21. Flanner MG, Zender CS (2005) Snowpack radiative heating: influence on Tibetan Plateau climate. Geophys Res Lett 32:L06501. doi:10.1029/2004GL022076

    Article  Google Scholar 

  22. Flanner MG, Zender CS (2006) Linking snowpack microphysics and albedo evolution. J Geophys Res 111:D12208. doi:10.1029/2005JD006834

    Article  Google Scholar 

  23. Oleson KW, Lawrence DM, Bonan GB et al (2010) Technical description of version 4.0 of the community land model (CLM). NCAR technical note NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, Colorado

  24. Aoki T, Kuchiki K, Niwano M et al (2011) Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J. Geophys Res 116:D11114. doi:10.1029/2010JD015507

    Article  Google Scholar 

  25. Roeckner E, Bäuml G, Bonaventura L et al (2003) The atmospheric general circulation model ECHAM5—part 1: model description. Technical report 349, Max Planck Institute for Meteorology, Hamburg

  26. Dickinson RE, Sellers AH, Kennedy PJ (1993) Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR technical note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, Colorado

  27. Yang ZL, Dickinson RE, Robock A et al (1997) Validation of the snow submodel of the biosphere–atmosphere transfer scheme with Russian snow cover and meteorological observational data. J Clim 10:353–373

    Article  Google Scholar 

  28. Dai YJ, Zeng XB, Dickinson RE et al (2003) The common land model (CLM). Bull Am Meteorol Soc 84:1013–1023

    Article  Google Scholar 

  29. Morin S, Lejeune Y, Lesaffre B et al (2012) An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models. Earth Syst Sci Data 4:13–21

    Article  Google Scholar 

  30. Fierz C, Armstrong RL, Durand Y et al (2009) The international classification for seasonal snow on the ground. IHP-VII technical documents in Hydrology No 83, IACS Contribution No 1, UNESCO-IHP, Paris

  31. Taillandier AS, Domine F, Simpson WR et al (2007) Rate of decrease of the specific surface area of dry snow: isothermal and temperature gradient conditions. J Geophys Res 112:F03003. doi:10.1029/2006JF000514

    Google Scholar 

  32. Dutra E, Balsamo G, Viterbo P et al (2010) An improved snow scheme for the ECMWF land surface model: description and offline validation. J Hydrometeorol 11:899–916

    Article  Google Scholar 

  33. Robinson DA, Kukla G (1985) Maximum surface albedo of seasonally snow-covered lands in the northern hemisphere. J Clim Appl Meteorol 24:402–411

    Article  Google Scholar 

  34. Aoki T, Hachikubo A, Hori M (2003) Effects of snow physical parameters on shortwave broadband albedos. J Geophys Res 108:4616. doi:10.1029/2003JD003506

    Article  Google Scholar 

  35. Cleveland WS, Devlin SJ (1988) Locally-weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major National Scientific Research Project on Global Changes (2010CB951902), and the National Natural Science Foundation of China (40975042 and 41175005). Suggestions to improve this manuscript from Professor Jiming Jin of the Utah State University are highly appreciated.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Li, W., Li, W. et al. An observational study of snow aging and the seasonal variation of snow albedo by using data from Col de Porte, France. Chin. Sci. Bull. 59, 4881–4889 (2014). https://doi.org/10.1007/s11434-014-0429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0429-9

Keywords

Navigation