Skip to main content
Log in

Transcriptional regulation of human CYP11A1 in gonads and adrenals

  • Published:
Journal of Biomedical Science

Summary

The CYP11A1 gene encodes the cholesterol side-chain cleavage enzyme, also termed cytochrome P450scc, which catalyzes the conversion of cholesterol to pregnenolone in the first step of steroid biosynthesis in mitochondria. The adrenal- and gonad-selective, hormonally and developmentally regulated expression of CYP11A1 is principally driven by its 2.3 kb promoter. Multiple trans-acting factors like SF-1, Sp1, AP-2, TReP-132, LBP-1b, LBP-9, AP-1, NF-1, and Ets control CYP11A1 transcription either through DNA-protein interaction with their specific cis-acting elements or through protein-protein interaction between each other, wherein SF-1 plays a central role in adrenals and testes. In addition to binding with its proximal and upstream motifs, SF-1 also physically interacts with TFIIB, CBP/p300, TReP-132, and c-Jun/AP-1 to specifically transmit the regulatory signals of cAMP. Other factors like Sp1 family members, AP-2, and LBP-1b/LBP-9 may be other factors that play a role in CYP11A1 transcription, particularly in placental cells. The TATA sequence could also contribute to tissue-specificity and hormonal regulation of CYP11A1 transcription. This article reviews recent studies focusing on adrenals and gonads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Payne A.H., Hales D.B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 25(6):947–970, 2004

    Article  PubMed  CAS  Google Scholar 

  2. Miller W.L. Minireview: regulation of steroidogenesis by electron transfer. Endocrinology 146(6):2544–2550, 2005

    Article  PubMed  CAS  Google Scholar 

  3. Guo I.-C., Hu M.-C., Chung B.-C: Transcriptional regulation of CYP11A1. J. Biomed. Sci. 10(6 Pt 1):593–598, 2003

    PubMed  CAS  Google Scholar 

  4. Hauffa B.P., Miller W.L., Grumbach M.M., Conte F.A., Kaplan S.L. Congenital adrenal hyperplasia due to deficient cholesterol side-chain cleavage activity (20, 22-desmolase) in a patient treated for 18 years. Clin. Endocrinol. (Oxf) 23(5):481–493, 1985

    CAS  Google Scholar 

  5. Muller J., Torsson A., Damkjaer Nielsen M., Petersen K.E., Christoffersen J., Skakkebaek N.E. Gonadal development and growth in 46,XX and 46,XY individuals with P450scc deficiency (congenital lipoid adrenal hyperplasia). Horm. Res. 36(5–6):203–208, 1991

    PubMed  Google Scholar 

  6. Hiort O., Holterhus P.M., Werner R., Marschke C., Hoppe U., Partsch C.J., Riepe F.G., Achermann J.C., Struve D. Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 46,XY sex reversal, and severe adrenal failure. J. Clin. Endocrinol. Metab. 90(1):538–541, 2005

    Article  PubMed  CAS  Google Scholar 

  7. Katsumata N., Ohtake M., Hojo T., Ogawa E., Hara T., Sato N., Tanaka T. Compound heterozygous mutations in the cholesterol side-chain cleavage enzyme gene (CYP11A) cause congenital adrenal insufficiency in humans. J. Clin. Endocrinol. Metab. 87(8):3808–3813, 2002

    Article  PubMed  CAS  Google Scholar 

  8. Bhangoo A., Anhalt H., Ten S., King S.R. Phenotypic variations in lipoid congenital adrenal hyperplasia. Pediatr. Endocrinol. Rev. 3(3):258–271, 2006

    PubMed  Google Scholar 

  9. Hu M.-C., Hsu N.-C., El Hadj N.B., Pai C.-I., Chu H.-P., Wang C.-K.L., Chung B.-C. Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol. Endocrinol. 16(8):1943–1950, 2002

    Article  PubMed  CAS  Google Scholar 

  10. Ben El Hadj N., Hu M.-C., Chu H.-P., Wang C.-K.L., Chung B.-C., Phenotypic analysis of mice with steroid deficiency. In: Sundberg J.P., Ichiki T. (Eds), Handbook on Genetically Engineered Mice. CRC Press, Chapter 19, 2005, pp. 253–262

  11. Manna P.R., Stocco D.M. Regulation of the steroidogenic acute regulatory protein expression: functional and physiological consequences. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5(1):93–108, 2005

    Article  PubMed  CAS  Google Scholar 

  12. Hsu H.-J., Hsu N.-C., Hu M.-C., Chung B.-C. Steroidogenesis in zebrafish and mouse models. Mol. Cell. Endocrinol. 248(1–2):160–163, 2006

    Article  PubMed  CAS  Google Scholar 

  13. Hu M.-C., Hsu H.-J., Guo I.-C., Chung B.-C. Function of Cyp11a1 in animal models. Mol. Cell. Endocrinol. 215(1–2):95–100, 2004

    Article  PubMed  CAS  Google Scholar 

  14. Hu M.-C., Chou S.-J., Huang Y.-Y., Hsu N.-C., Li H., Chung B.-C. Tissue-specific, hormonal, and developmental regulation of SCC-LacZ expression in transgenic mice leads to adrenocortical zone characterization. Endocrinology 140(12):5609–5618, 1999

    Article  PubMed  CAS  Google Scholar 

  15. Huang Y.-Y., Hu M.-C., Hsu N.-C., Wang C.-K.L., Chung B.-C. Action of hormone responsive sequence in 2.3 kb promoter of CYP11A1. Mol. Cell. Endocrinol. 175(1–2):205–210, 2001

    Article  PubMed  CAS  Google Scholar 

  16. Moore C.C., Brentano S.T., Miller W.L. Human P450scc gene transcription is induced by cyclic AMP and repressed by 12-O-tetradecanoylphorbol-13-acetate and A23187 through independent cis elements. Mol. Cell. Biol. 10(11):6013–6023, 1990

    PubMed  CAS  Google Scholar 

  17. Guo I.-C., Chung B.-C.: Cell-type specificity of human CYP11A1 TATA box. J. Steroid Biochem. Mol. Biol. 69(1–6):329–334, 1999

    Article  PubMed  CAS  Google Scholar 

  18. Guo I.-C., Tsai H.-M., Chung B.-C. Actions of two different cAMP-responsive sequences and an enhancer of the human CYP11A1 (P450scc) gene in adrenal Y1 and placental JEG-3 cells. J. Biol. Chem. 269(9):6362–6369, 1994

    PubMed  CAS  Google Scholar 

  19. Chung B.-C., Guo I.-C., Chou S.-J. Transcriptional regulation of the CYP11A1 and ferredoxin genes. Steroids 62(1):37–42, 1997

    Article  PubMed  CAS  Google Scholar 

  20. Watanabe N., Inoue H., Fujii-Kuriyama Y. Regulatory mechanisms of cAMP-dependent and cell-specific expression of human steroidogenic cytochrome P450scc (CYP11A1) gene. Eur. J. Biochem. 222(3):825–834, 1994

    Article  PubMed  CAS  Google Scholar 

  21. Chou S.-J., Lai K.-N., Chung B.-C. Characterization of the upstream sequence of the human CYP11A1 gene for cell type-specific expression. J. Biol. Chem. 271(36):22125–22129, 1996

    Article  PubMed  CAS  Google Scholar 

  22. Gizard F., Lavallee B., DeWitte F., Hum D.W. A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression. J. Biol. Chem. 276(36):33881–33892, 2001

    Article  PubMed  CAS  Google Scholar 

  23. Gizard F., Lavallee B., DeWitte F., Teissier E., Staels B., Hum D.W. The transcriptional regulating protein of 132 kDa (TReP-132) enhances P450scc gene transcription through interaction with steroidogenic factor-1 in human adrenal cells. J. Biol. Chem. 277(42):39144–39155, 2002

    Article  PubMed  CAS  Google Scholar 

  24. Huang N., Miller W.L. LBP proteins modulate SF1-independent expression of P450scc in human placental JEG-3 cells. Mol. Endocrinol. 19(2):409–420, 2005

    Article  PubMed  CAS  Google Scholar 

  25. Ben-Zimra M., Koler M., Orly J. Transcription of cholesterol side-chain cleavage cytochrome P450 in the placenta: activating protein-2 assumes the role of steroidogenic factor-1 by binding to an overlapping promoter element. Mol. Endocrinol. 16(8):1864–1880, 2002

    Article  PubMed  CAS  Google Scholar 

  26. Mastorakos G., Pavlatou M.G., Mizamtsidi M. The hypothalamic-pituitary-adrenal and the hypothalamic- pituitary-gonadal axes interplay. Pediatr. Endocrinol. Rev. 1(3):172–181, 2006

    Google Scholar 

  27. Guo I.-C., Huang C., Chung B.-C. Differential regulation of the CYP11A1 (P450scc) and ferredoxin genes in adrenal and placental cells. DNA Cell Biol. 12(9):849–860, 1993

    Article  PubMed  CAS  Google Scholar 

  28. Hu M.-C., Guo I.-C., Lin J.-H., Chung B.-C. Regulated expression of cytochrome P-450scc (cholesterol-side-chain cleavage enzyme) in cultured cell lines detected by antibody against bacterially expressed human protein. Biochem. J. 274:813–817, 1991

    PubMed  CAS  Google Scholar 

  29. Hu M.-C., Hsu N.-C., Pai C.-I., Wang C.-K.L., Chung B.-C. Functions of the upstream and proximal steroidogenic factor 1 (SF-1)-binding sites in the CYP11A1 promoter in basal transcription and hormonal response. Mol. Endocrinol. 15(5):812–818, 2001

    Article  PubMed  CAS  Google Scholar 

  30. Li L.-A., Chiang E.F.-L., Chen J.-C., Hsu N.-C., Chen Y.-J., Chung B.-C. Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol. Endocrinol. 13(9):1588–1598, 1999

    Article  PubMed  CAS  Google Scholar 

  31. Huang N., Miller W.L. Cloning of factors related to HIV-inducible LBP proteins that regulate steroidogenic factor-1-independent human placental transcription of the cholesterol side-chain cleavage enzyme, P450scc. J. Biol. Chem. 275(4):2852–2858, 2000

    Article  PubMed  CAS  Google Scholar 

  32. Pena P., Reutens A.T., Albanese C., D’Amico M., Watanabe G., Donner A., Shu I.W., Williams T., Pestell R.G. Activator protein-2 mediates transcriptional activation of the CYP11A1 gene by interaction with Sp1 rather than binding to DNA. Mol. Endocrinol. 13(8):1402–1416, 1999

    Article  PubMed  CAS  Google Scholar 

  33. Roeder R.G. The role of general initiation factors in transcription by RNA polymerase II. Trends. Biochem. Sci. 21(9):327–335, 1996

    Article  PubMed  CAS  Google Scholar 

  34. Chen C., Guo I.-C. Effect of cAMP on protein binding activities of three elements in upstream promoter of human CYP11A1 gene. Life Sci. 67(17):2045–2049, 2000

    Article  PubMed  CAS  Google Scholar 

  35. Hsu H.-T., Chang Y.-C., Chiu Y.-N., Liu C.-L., Chang K.-J., Guo I.-C. Leptin interferes with adrenocorticotropin/3′,5′-cyclic adenosine monophosphate (cAMP) signaling, possibly through a Janus kinase 2-phosphatidylinositol 3-kinase/Akt-phosphodiesterase 3-cAMP pathway, to down-regulate cholesterol side-chain cleavage cytochrome P450 enzyme in human adrenocortical NCI-H295 cell line. J. Clin. Endocrinol. Metab. 91(7):2761–2769, 2006

    Article  PubMed  CAS  Google Scholar 

  36. Chang C.-Y., Huang C., Guo I.-C., Tsai H.-M., Wu D.-A., Chung B.-C. Transcription of the human ferredoxin gene through a single promoter which contains the 3′,5′-cyclic adenosine monophosphate-responsive sequence and Sp 1-binding site. Mol. Endocrinol. 6(9):1362–1370, 1992

    Article  PubMed  CAS  Google Scholar 

  37. Yeh J.-R., Huang C., Wu D.-A., Guo I.-C., Rainey W.E., Chung B.-C. Regulation of ferredoxin gene in steroidogenic and nonsteroidogenic cells. J. Steroid Biochem. Mol. Biol. 53(1–6):47–51, 1995

    Article  PubMed  CAS  Google Scholar 

  38. Zhao C., Meng A. Sp1-like transcription factors are regulators of embryonic development in vertebrates. Dev. Growth Differ. 47(4):201–211, 2005

    Article  PubMed  CAS  Google Scholar 

  39. Ahlgren R., Suske G., Waterman M.R., Lund J. Role of Sp1 in cAMP-dependent transcriptional regulation of the bovine CYP11A gene. J. Biol. Chem. 274(27):19422–19428, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Transgenic Core Facility at Academia Sinica for the generation of transgenic and knockout mouse lines. This work was supported by the National Taiwan University (to I.-C. Guo), and by grants NSC94-2311-B-001-039 (to B.-c. Chung) and NSC95-2313-B002-061-MY3 (to I.-C. Guo) from the National Science Council, and DOH95-TD-HF-111-003(1/3) (to I.-C. Guo) from the Department of Health, Executive Yuan, and AS92IMB4PP (to B.-c. Chung) from Academia Sinica, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bon-chu Chung.

Additional information

This article is for the Special Issue of IMB 20th anniversary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, IC., Shih, MC., Lan, HC. et al. Transcriptional regulation of human CYP11A1 in gonads and adrenals. J Biomed Sci 14, 509–515 (2007). https://doi.org/10.1007/s11373-007-9177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9177-z

Keywords

Navigation