Skip to main content
Log in

Getting the edge: neural precursor selection

  • Published:
Journal of Biomedical Science

Abstract

A key issue in development is how to specify single isolated precursor cells to adopt a distinct fate from a group of naive cells. Studies on the development of Drosophila external sensory (ES) organs have revealed multiple mechanisms to specify single sensory organ precursors (SOPs) from clusters of cells with equivalent neural potential. Initially single SOPs are selected in part through cell–cell competition from clusters of ectodermal cells that express proneural proteins. To reinforce the singularity, lateral inhibition through the Delta/Notch system and feedback regulations lead to exclusive expression of proneural proteins in SOPs. As transcriptional activators, proneural proteins execute a genetic program in SOP cells for the development of an eventually ES organ. In this article, we will summarize recent advances on how transcriptional regulation, protein degradation, endocytosis and gene silencing by microRNA participate in SOP specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson D.J., Molecular control of neural development, Z.W. Hall, Molecular Neurobiology, Sunderland, Sinauer Associates, Inc, p. 355–387, 1992

  2. Lai E.C., Orgogozo V., A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev. Biol. 269(1): 1–17, 2004

    Article  PubMed  CAS  Google Scholar 

  3. Campuzano S., Balcells L., Villares R., Carramolino L., Garcia-Alonso L., Modolell J., Excess function hairy-wing mutations caused by gypsy and copia insertions within structural genes of the achaete-scute locus of Drosophila. Cell 44(2): 303–312, 1986

    Article  PubMed  CAS  Google Scholar 

  4. Caudy M., Vassin H., Brand M., Tuma R., Jan L.Y., Jan Y.N., Daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete-scute complex. Cell 55(6): 1061–1067, 1988

    Article  PubMed  CAS  Google Scholar 

  5. Rodriguez I., Hernandez R., Modolell J., Ruiz-Gomez M., Competence to develop sensory organs is temporally and spatially regulated in Drosophila epidermal primordia. Embo. J. 9(11): 3583–3592, 1990

    PubMed  CAS  Google Scholar 

  6. Cabrera C.V., Alonso M.C., Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. Embo. J. 10(10): 2965–2973, 1991

    PubMed  CAS  Google Scholar 

  7. Cubas P., de Celis J.F., Campuzano S., Modolell J., Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes. Dev. 5(6): 996–1008, 1991

    Article  PubMed  CAS  Google Scholar 

  8. Skeath J.B., Carroll S.B., Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes. Dev. 5(6): 984–995, 1991

    Article  PubMed  CAS  Google Scholar 

  9. Justice N.J., Jan Y.N., Variations on the Notch pathway in neural development. Curr. Opin. Neurobiol. 12(1): 64–70, 2002

    Article  PubMed  CAS  Google Scholar 

  10. Artavanis-Tsakonas S., Rand M.D., Lake R.J., Notch signaling: cell fate control and signal integration in development. Science 284(5415): 770–776, 1999

    Article  PubMed  CAS  Google Scholar 

  11. Bray S.J., Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7(9): 678–689, 2006

    Article  PubMed  CAS  Google Scholar 

  12. Roegiers F., Jan Y.N., Asymmetric cell division. Curr. Opin. Cell Biol. 16(2): 195–205, 2004

    Article  PubMed  CAS  Google Scholar 

  13. Jafar-Nejad H., Acar M., Nolo R., Lacin H., Pan H., Parkhurst S.M., Bellen H.J., Senseless acts as a binary switch during sensory organ precursor selection. Genes. Dev. 17(23): 2966–2978, 2003

    Article  PubMed  CAS  Google Scholar 

  14. Acar M., Jafar-Nejad H., Giagtzoglou N., Yallampalli S., David G., He Y., Delidakis C., Bellen H.J., Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator. Development 133(10): 1979–1989, 2006

    Article  PubMed  CAS  Google Scholar 

  15. Bailey A.M., Posakony J.W., Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes. Dev. 9(21): 2609–2622, 1995

    Article  PubMed  CAS  Google Scholar 

  16. Jarriault S., Brou C., Logeat F., Schroeter E.H., Kopan R., Israel A., Signalling downstream of activated mammalian Notch. Nature 377(6547): 355–358, 1995

    Article  PubMed  CAS  Google Scholar 

  17. Lecourtois M., Schweisguth F., The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes. Dev. 9(21): 2598–2608, 1995

    Article  PubMed  CAS  Google Scholar 

  18. Barolo S., Stone T., Bang A.G., Posakony J.W., Default repression and Notch signaling: hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to suppressor of hairless. Genes. Dev. 16(15): 1964–1976, 2002

    Article  PubMed  CAS  Google Scholar 

  19. Morel V., Lecourtois M., Massiani O., Maier D., Preiss A., Schweisguth F., Transcriptional repression by suppressor of hairless involves the binding of a hairless-dCtBP complex in Drosophila. Curr. Biol. 11(10): 789–792, 2001

    Article  PubMed  CAS  Google Scholar 

  20. Nagel A.C., Krejci A., Tenin G., Bravo-Patino A., Bray S., Maier D., Preiss A., Hairless-mediated repression of notch target genes requires the combined activity of Groucho and CtBP corepressors. Mol. Cell Biol. 25(23): 10433–10441, 2005

    Article  PubMed  CAS  Google Scholar 

  21. Becskei A., Seraphin B., Serrano L., Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. Embo. J. 20(10): 2528–2535, 2001

    Article  PubMed  CAS  Google Scholar 

  22. Rossi F.M., Kringstein A.M., Spicher A., Guicherit O.M., Blau H.M., Transcriptional control: rheostat converted to on/off switch. Mol. Cell 6(3): 723–728, 2000

    Article  PubMed  CAS  Google Scholar 

  23. Pi H., Huang S.K., Tang C.Y., Sun Y.H., Chien C.T., Phyllopod is a target gene of proneural proteins in Drosophila external sensory organ development. Proc. Natl. Acad. Sci. USA 101(22): 8378–8383, 2004

    Article  PubMed  CAS  Google Scholar 

  24. Chang H.C., Solomon N.M., Wassarman D.A., Karim F.D., Therrien M., Rubin G.M., Wolff T., Phyllopod functions in the fate determination of a subset of photoreceptors in Drosophila. Cell 80(3): 463–472, 1995

    Article  PubMed  CAS  Google Scholar 

  25. Dickson B.J., Dominguez M., van der Straten A., Hafen E., Control of Drosophila photoreceptor cell fates by phyllopod, a novel nuclear protein acting downstream of the Raf kinase. Cell 80(3): 453–462, 1995

    Article  PubMed  CAS  Google Scholar 

  26. Pi H., Wu H.J., Chien C.T., A dual function of phyllopod in Drosophila external sensory organ development: cell fate specification of sensory organ precursor and its progeny. Development 128(14): 2699–2710, 2001

    PubMed  CAS  Google Scholar 

  27. Tang A.H., Neufeld T.P., Kwan E., Rubin G.M., PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA-dependent mechanism. Cell 90(3): 459–467, 1997

    Article  PubMed  CAS  Google Scholar 

  28. Badenhorst P., Finch J.T., Travers A.A., Tramtrack co-operates to prevent inappropriate neural development in Drosophila. Mech. Dev. 117(1–2): 87–101, 2002

    Article  PubMed  CAS  Google Scholar 

  29. Guo M., Bier E., Jan L.Y., Jan Y.N., Tramtrack acts downstream of numb to specify distinct daughter cell fates during asymmetric cell divisions in the Drosophila PNS. Neuron. 14(5): 913–925, 1995

    Article  PubMed  CAS  Google Scholar 

  30. Li S., Li Y., Carthew R.W., Lai Z.C., Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor tramtrack. Cell 90(3): 469–478, 1997

    Article  PubMed  CAS  Google Scholar 

  31. Li S., Xu C., Carthew R.W., Phyllopod acts as an adaptor protein to link the sina ubiquitin ligase to the substrate protein tramtrack. Mol. Cell Biol. 22(19): 6854–6865, 2002

    Article  PubMed  CAS  Google Scholar 

  32. Seugnet L., Simpson P., Haenlin M., Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev. Biol. 192(2): 585–598, 1997

    Article  PubMed  CAS  Google Scholar 

  33. Hagedorn E.J., Bayraktar J.L., Kandachar V.R., Bai T., Englert D.M., Chang H.C., Drosophila melanogaster auxilin regulates the internalization of delta to control activity of the Notch signaling pathway. J. Cell Biol. 173(3): 443–452, 2006

    Article  PubMed  CAS  Google Scholar 

  34. Wang W., Struhl G., Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development 131(21): 5367–5380, 2004

    Article  PubMed  CAS  Google Scholar 

  35. Parks A.L., Klueg K.M., Stout J.R., Muskavitch M.A., Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127(7): 1373–1385, 2000

    PubMed  CAS  Google Scholar 

  36. Aguilar R.C., Wendland B., Ubiquitin: not just for proteasomes anymore. Curr. Opin. Cell Biol. 15(2): 184–190, 2003

    Article  PubMed  CAS  Google Scholar 

  37. Lai E.C., Deblandre G.A., Kintner C., Rubin G.M., Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev. Cell 1(6): 783–794, 2001

    Article  PubMed  CAS  Google Scholar 

  38. Yeh E., Dermer M., Commisso C., Zhou L., McGlade C.J., Boulianne G.L., Neuralized functions as an E3 ubiquitin ligase during Drosophila development. Curr. Biol. 11(21): 1675–1679, 2001

    Article  PubMed  CAS  Google Scholar 

  39. Deblandre G.A., Lai E.C., Kintner C., Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Dev. Cell 1(6): 795–806, 2001

    Article  PubMed  CAS  Google Scholar 

  40. Pavlopoulos E., Pitsouli C., Klueg K.M., Muskavitch M.A., Moschonas N.K., Delidakis C., Neuralized Encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev. Cell 1(6): 807–816, 2001

    Article  PubMed  CAS  Google Scholar 

  41. Lai E.C., Roegiers F., Qin X., Jan Y.N., Rubin G.M., The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta. Development 132(10): 2319–2332, 2005

    Article  PubMed  CAS  Google Scholar 

  42. Le Borgne R., Remaud S., Hamel S., Schweisguth F., Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serrate signaling in Drosophila. PLoS Biol. 3(4): e96, 2005

    Article  PubMed  Google Scholar 

  43. Wang W., Struhl G., Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila. Development 132(12): 2883–2894, 2005

    Article  PubMed  CAS  Google Scholar 

  44. Meister G., Tuschl T., Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006): 343–349, 2004

    Article  PubMed  CAS  Google Scholar 

  45. Li Y., Wang F., Lee J.A., Gao F.B., MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes. Dev. 20(20): 2793–2805, 2006

    Article  PubMed  CAS  Google Scholar 

  46. Lai E.C., Bodner R., Kavaler J., Freschi G., Posakony J.W., Antagonism of notch signaling activity by members of a novel protein family encoded by the bearded and enhancer of split gene complexes. Development 127(2): 291–306, 2000

    PubMed  CAS  Google Scholar 

  47. Wurmbach E., Wech I., Preiss A., The Enhancer of split complex of Drosophila melanogaster harbors three classes of Notch responsive genes. Mech. Dev. 80(2): 171–180, 1999

    Article  PubMed  CAS  Google Scholar 

  48. Lai E.C., Posakony J.W., The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 124(23): 4847–4856, 1997

    PubMed  CAS  Google Scholar 

  49. Lai E.C., Burks C., Posakony J.W., The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. Development 125(20): 4077–4088, 1998

    PubMed  CAS  Google Scholar 

  50. Lai E.C., Posakony J.W., Regulation of Drosophila neurogenesis by RNA:RNA duplexes? Cell 93(7): 1103–1104, 1998

    Article  PubMed  CAS  Google Scholar 

  51. Lai E.C., Tam B., Rubin G.M., Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes. Dev. 19(9): 1067–1080, 2005

    Article  PubMed  CAS  Google Scholar 

  52. Stark A., Brennecke J., Bushati N., Russell R.B., Cohen S.M., Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123(6): 1133–1146, 2005

    Article  PubMed  CAS  Google Scholar 

  53. Bertrand N., Castro D.S., Guillemot F., Proneural genes and the speciation of neural cell types. Nat. Rev. Neurosci. 3(7): 517–530, 2002

    Article  PubMed  CAS  Google Scholar 

  54. Chitnis A.B., Control of neurogenesis–lessons from frogs, fish and flies. Curr. Opin. Neurobiol. 9(1): 18–25, 1999

    Article  PubMed  CAS  Google Scholar 

  55. Hsu C.P., Lee P.H., Chang C.W., Lee C.T., Constructing quantitative models from qualitative mutant phenotypes: preferences in selecting sensory organ precursors. Bioinformatics 22(11): 1375–1382, 2006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yi-Chen Li for the illustration. H. Pi is supported by grants from National Science Council (NSC) and the Chang-Gang Memorial Hospitals. C.T. Chien is supported by grants from NSC and Academia Sinica in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Ting Chien.

Additional information

For the Special issue of IMB 20th anniversary

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pi, H., Chien, CT. Getting the edge: neural precursor selection. J Biomed Sci 14, 467–473 (2007). https://doi.org/10.1007/s11373-007-9156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9156-4

Keywords

Navigation