Skip to main content
Log in

Entanglement, Purity, and Information Entropies in Continuous Variable Systems

  • Published:
Open Systems & Information Dynamics

Abstract

Quantum entanglement of pure states of a bipartite system is defined as the amount of local or marginal (i.e. referring to the subsystems) entropy. For mixed states this identification vanishes, since the global loss of information about the state makes it impossible to distinguish between quantum and classical correlations. Here we show how the joint knowledge of the global and marginal degrees of information of a quantum state, quantified by the purities or, in general, by information entropies, provides an accurate characterization of its entanglement. In particu-lar, for Gaussian states of continuous variable systems, we classify the entanglement of two-mode states according to their degree of total and partial mixedness, comparing the different roles played by the purity and the generalized p-entropies in quantifying the mixedness and bounding the entanglement. We prove the existence of strict upper and lower bounds on the entanglement and the existence of extremally (maximally and minimally) entangled states at fixed global and marginal degrees of information. This results allow for a powerful, operative method to measure mixed-state entanglement without the full tomographic reconstruction of the state. Finally, we briefly discuss the ongoing extension of our analysis to the quantification of multipartite entan-glement in highly symmetric Gaussian states of arbitrary 1 × N-mode partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, Discussion of probability relations between separated systems (I), Proceedings of the Cambridge Philosophical Society 31, (1935), p. 555.

    Google Scholar 

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  3. L. Henderson and V. Vedral, Phys. Rev. Lett. 84, 2263 (2000).

    Article  PubMed  Google Scholar 

  4. S. L. Braunstein and A. K. Pati, eds., Quantum Information Theory with Continuous Variables, Kluwer, Dordrecht, 2002.

    Google Scholar 

  5. S. L. Braunstein and P. van Loock, quant-ph/0410100, and Rev. Mod. Phys., to appear.

  6. R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987).

    Article  PubMed  Google Scholar 

  7. J. Williamson, Am. J. Math. 58, 141 (1936); see also V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978.

  8. A. Serafini, F. Illuminati, and S. De Siena, J. Phys. B: At. Mol. Opt. Phys. 37, L21 (2004).

    Article  Google Scholar 

  9. M. G. A. Paris, F. Illuminati, A. Serafini, and S. De Siena, Phys. Rev. A 68, 012314 (2003).

    Article  Google Scholar 

  10. M. J. Bastiaans, J. Opt. Soc. Am. 1, 711 (1984); ibid. 3, 1243 (1986).

  11. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  Google Scholar 

  12. A. Rényi, Probability Theory, North Holland, Amsterdam, 1970.

  13. A. Peres, Phys. Rev. Lett. 77, 1413 (1996); R. Horodecki, P. Horodecki, and M. Horodecki, Phys. Lett. A 210, 377 (1996).

  14. R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

    Article  PubMed  Google Scholar 

  15. G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002); K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998); J. Eisert, PhD Thesis, University of Potsdam, Potsdam, 2001.

  16. G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. Lett. 93, 220504 (2004).

    Article  PubMed  Google Scholar 

  17. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

    Article  PubMed  Google Scholar 

  18. G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. A 70, 022318 (2004).

    Article  Google Scholar 

  19. The largest eigenvalue ~ν_+ of the partially transposed CM of a two-mode Gaussian state is always greater than 1 and so it does not enter in the computation of the logarithmic negativity (2), see [18].

  20. C. H. Bennett, D.P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).

    Article  PubMed  Google Scholar 

  21. G. Giedke, M. M. Wolf, O. Krüger, R. F. Werner, and J. I. Cirac, Phys. Rev. Lett. 91, 107901 (2003).

    Article  PubMed  Google Scholar 

  22. S. Ishizaka and T. Hiroshima, Phys. Rev. A 62, 022310 (2000).

    Article  Google Scholar 

  23. F. Verstraete, K. Audenaert, and B. De Moor, Phys. Rev. A 64, 012316 (2001); W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, Phys. Rev. A 64, 030302 (2001).

    Google Scholar 

  24. T.-C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro, and F. Verstraete, Phys. Rev. A 67, 022110 (2003).

    Article  Google Scholar 

  25. J. Eisert and M. Plenio, J. Mod. Opt. 46, 145 (1999); F. Verstraete, K. Audenaert, J. Dehaene, and B. de Moor, J. Phys. A 34, 10327 (2001).

  26. K. Życzkowski, P. Horodecki, A. Sanpera and M. Lewenstein, Phys. Rev. A 58, 883 (1998); K. Życzkowski, Phys. Rev. A 60, 3496 (1999).

  27. G. Adesso, F. Illuminati, and S. De Siena, Phys. Rev. A 68, 062318 (2003).

    Article  Google Scholar 

  28. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  Google Scholar 

  29. G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. Lett. 92, 087901 (2004).

    Article  PubMed  Google Scholar 

  30. A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P. Horodecki, and L. C. Kwek, Phys. Rev. Lett. 88, 217901 (2002); R. Filip, Phys. Rev. A 65, 062320 (2002).

    Google Scholar 

  31. J. Fiurásek and N. J. Cerf, Phys. Rev. Lett. 93, 063601 (2004).

    Article  PubMed  Google Scholar 

  32. J. Wenger, J. Fiurášek, R. Tualle-Brouri, N. J. Cerf, and Ph. Grangier, Phys. Rev. A 70, 053812 (2004).

    Article  Google Scholar 

  33. K. Życzkowski, Open Sys. Information Dyn. 10, 297 (2003).

    Article  Google Scholar 

  34. Being all equivalent to two-mode entanglements, all the 1 × K entanglements can be directly compared to each other. For further details see [16].

  35. P. van Loock, Fortschr. Phys. 50, 12 1177 (2002).

    Article  Google Scholar 

  36. A. Serafini, G. Adesso, and F. Illuminati, quant-ph/0411109 (2004).

  37. G. Adesso and F. Illuminati, quant-ph/0410050 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Adesso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adesso, G., Serafini, A. & Illuminati, F. Entanglement, Purity, and Information Entropies in Continuous Variable Systems. Open Syst Inf Dyn 12, 189–205 (2005). https://doi.org/10.1007/s11080-005-5730-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11080-005-5730-2

Keywords

Navigation