Skip to main content
Log in

Enhanced magnetic properties of Co0.5Cu0.25Zn0.25Fe2-xCrxO4 nano ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, Co–Cu–Zn–Cr nano ferrites with a composition of Co0.5Cu0.25Zn0.25Fe2-xCrxO4 (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.25) are prepared by sol–gel auto combustion method. These doped nanocrystalline ferrites’ characteristics were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibratory sample magnetometer (VSM). Such analytical characterizations were done for the structural and magnetic investigations. The crystallographic structure was identified using X-ray diffraction, which showed that a single-phase cubic spinel structure has been formed. According to the Debye–Scherrer equation, the synthesized samples’ average crystallite diameters ranged from 55.32 to 33.41 nm. Field emission scanning electron microscopy (FE-SEM) was used to study the surface morphology of the particles, revealing aggregated grains with a sponge-like structure. Functional groups were detected using Fourier transform infrared (FTIR) spectroscopy; peaks at about 393.21–582.71 cm−1 and 392.74–381.50 cm−1 indicated specific chemical properties. Magnetic characteristics at room temperature were investigated using a vibrating sample magnetometer (VSM), revealing some magnetic parameters. Hysteresis curves demonstrate reduced coercivity (263.98 to 126.62 Oe) and saturation magnetization (43.72 to 63.29 emu/g) upon metal ion replacement in the Co–Cu–Zn nano ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data can be obtained from the corresponding author on request.

References

  1. A. Ramakrishna, N. Murali, T.W. Mammo, K. Samatha, V. Veeraiah, Structural and DC electrical resistivity, magnetic properties of Co0.5M0.5Fe2O4 (M=Ni, Zn, and Mg) ferrite nanoparticles. Physica B B 534, 134–140 (2018). https://doi.org/10.1016/j.physb.2018.01.033

    Article  CAS  Google Scholar 

  2. K. Chandramouli, B. Suryanarayana, P.V.S.K.P. Varma, V. Raghavendra, K.A. Emmanuel, P. Taddesse, N. Murali, T.W. Mammo, D. Parajuli, Effect of Cr3+ substitution on dc electrical resistivity and magnetic properties of Cu0.7Co0.3Fe2–xCrxO4 ferrite nanoparticles prepared by sol-gel auto combustion method. Results Phys. (2021). https://doi.org/10.1016/j.rinp.2021.104117

    Article  Google Scholar 

  3. R.Y. Mudi, V.B.G. Tiruveedhi, D. Kothandan, P.S.V. Shanmukhi, T.W. Mammo, N. Murali, Structural investigation, magnetic and DC electrical resistivity properties of Co0.5–xNixZn0.5Fe2O4 nano ferrites. Inorg. Chem. Commun.. Chem. Commun. (2024). https://doi.org/10.1016/j.inoche.2023.111958

    Article  Google Scholar 

  4. Y. Zhao, Y. Sun, H. Hou, Core-shell structure nanoprecipitates in Fe–xCu–3.0Mn-1.5Ni–15Al alloys: a phase field study. Prog. Nat. Sci.: Mater. Int. 32(3), 358–368 (2022). https://doi.org/10.1016/j.pnsc.2022.04.001

    Article  CAS  Google Scholar 

  5. Q. Guo, H. Hou, Y. Pan, X. Pei, Z. Song, P.K. Liaw, Y. Zhao, Hardening-softening of Al0.3CoCrFeNi high-entropy alloy under nanoindentation. Mater. Des. 231, 112050 (2023). https://doi.org/10.1016/j.matdes.2023.112050

    Article  CAS  Google Scholar 

  6. K.L.V. Nagasree, B. Suryanarayana, V. Raghavendra, S. Uppugalla, T.W. Mammo, D. Kavyasri, N. Murali, M.K. Raju, D. Parajuli, K. Samatha, Influence of Mg2+ and Ce3+ substituted on synthesis, structural, morphological, electrical, and magnetic properties of Cobalt nano ferrites. Inorg. Chem. Commun.. Chem. Commun. (2023). https://doi.org/10.1016/j.inoche.2023.110405

    Article  Google Scholar 

  7. W. Yang, X. Jiang, X. Tian, H. Hou, Y. Zhao, Phase-field simulation of nano-α′ precipitates under irradiation and dislocations. J. Market. Res. 22, 1307–1321 (2023). https://doi.org/10.1016/j.jmrt.2022.11.165

    Article  CAS  Google Scholar 

  8. K. Sakthipandi, N. Lenin, R.R. Kanna, A.S. Afroze, M. Sivabharathy, PVA-doped NiNdxFe2-xO4 nanoferrites: tuning of dielectric and magnetic properties. J. Magn. Magn. Mater.Magn. Magn. Mater. 485, 105–111 (2019). https://doi.org/10.1016/j.jmmm.2019.04.074

    Article  CAS  Google Scholar 

  9. T.W. Mammo, N. Murali, Y.M. Sileshi, T. Arunamani, Studies of structural, morphological, electrical, and magnetic properties of Mg-substituted Co-ferrite materials synthesized using sol-gel autocombustion method. Physica B B 523, 24–30 (2017). https://doi.org/10.1016/j.physb.2017.08.013

    Article  CAS  Google Scholar 

  10. L. Shao, S. Zhang, L. Hu, Y. Wu, Y. Huang, P. Le, S. Dai, W. Li, N. Xue, F. Xu, L. Zhu, Influence of heat treatment condition on the microstructure, microhardness and corrosion resistance of Ag–Sn–In–Ni–Te alloy wire. Materials 17(11), 2785 (2024). https://doi.org/10.3390/ma17112785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. R. Wang, H. Huang, K. Li, J. Yang, Z. Wu, H. Kong, Design and evolution of Fe–Si–Al soft magnetic composites doped with carbonyl iron powders: overcoming the restrictive relation between permeability and core loss. Ceram. Int. 50(10), 17861–17872 (2024). https://doi.org/10.1016/j.ceramint.2024.02.274

    Article  CAS  Google Scholar 

  12. A. Hossain, A.R. Gilev, P. Yanda, V.A. Cherepanov, A.S. Volegov, K. Sakthipandi, A. Sundaresan, Optical, magnetic and magneto-transport properties of Nd1-xAxMn0.5Fe0.5O3-δ (A= Ca, Sr, Ba; x= 0, 0.25). J. Alloys Compd. 847, 156297 (2020). https://doi.org/10.1016/j.jallcom.2020.156297

    Article  CAS  Google Scholar 

  13. K. Sakthipandi, K. Kannagi, A. Hossain, Effect of lanthanum doping on the structural, electrical, and magnetic properties of Mn0.5Cu0.5LaxFe2xO4 nanoferrites. Ceram. Int. 46(11), 19634–19638 (2020). https://doi.org/10.1016/j.ceramint.2020.04.255

    Article  CAS  Google Scholar 

  14. L. Xie, X. Cen, H. Lu, G. Yin, M. Yin, A hierarchical feature-logit-based knowledge distillation scheme for internal defect detection of magnetic tiles. Adv. Eng. Inform. 61, 102526 (2024). https://doi.org/10.1016/j.aei.2024.102526

    Article  Google Scholar 

  15. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    Article  CAS  PubMed  Google Scholar 

  16. A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater.Magn. Magn. Mater. 323(15), 2049–2054 (2011). https://doi.org/10.1016/j.jmmm.2011.03.017

    Article  CAS  Google Scholar 

  17. S.K.R. Kurucheti, G. Ranganath, A. Nagaraj, S.H. Jose, Corrosion rate and surface hardness optimization in wire electrical discharge machining of AISI A2 tool steel in various conductive states and mediums. Mater. Res. Expr. 8(7), 076001 (2021). https://doi.org/10.1088/2053-1591/ac0eb8

    Article  CAS  Google Scholar 

  18. A.B.A. Hammad, H.S. Magar, A.M. Mansour, R.Y. Hassan, A.M.E. Nahrawy, Construction and characterization of nano-oval BaTi0.7Fe0.3O3@NiFe2O4 nanocomposites as an effective platform for the determination of H2O2. Sci. Rep. 13(1), 9048 (2023). https://doi.org/10.1038/s41598-023-36076-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A.M. Mansour, A.M. Fathi, A.B. Abou, A.M. Hammad, El. Nahrawy, Microstructures, optical and electrochemical properties of advanced Fe0.8Se0.14Si0.06MoO4 nanocrystalline for energy storage applications. Phys. Scr. (2023). https://doi.org/10.1088/1402-4896/acc9ea

    Article  Google Scholar 

  20. T.W. Mammo, N. Murali, Y.M. Sileshi, T. Arunamani, Effect of Ce-substitution on structural, morphological, magnetic and DC electrical resistivity of Co-ferrite materials. Physica B B 531, 164–170 (2018). https://doi.org/10.1016/j.physb.2017.12.049

    Article  CAS  Google Scholar 

  21. T.W. Mammo, C.V. Kumari, S.J. Margarette, A. Ramakrishna, R. Vemuri, Y.B. Shankar Rao, K.L. Vijaya Prasad, Y. Ramakrishna, N. Murali, Synthesis, structural, dielectric and magnetic properties of cobalt ferrite nanomaterial prepared by sol-gel autocombustion technique. Physica B B 581, 411769 (2020). https://doi.org/10.1016/j.physb.2019.411769

    Article  CAS  Google Scholar 

  22. K.M. Batoo, M.-S. Abd El-sadek, Electrical and magnetic transport properties of Ni–Cu–Mg ferrite nanoparticles prepared by sol–gel method. J. Alloys Compd. 566, 112–119 (2016). https://doi.org/10.1016/j.jallcom.2013.02.129

    Article  CAS  Google Scholar 

  23. P. Kaur, S. Singh, V. Babbar, V. Kumar, K.B. Tikoo, A. Kaushik, S. Singhal, Aggrandized catalytic performance of transition metal doped strontium hexagonal ferrites for the treatment of malevolent organic pollutants. J. Alloy. Compd. 856, 158026 (2021). https://doi.org/10.1016/j.jallcom.2020.158026

    Article  CAS  Google Scholar 

  24. A.M. Abouelnaga, A.M. Mansour, A.B. AbouHammad, A.M. El Nahrawy, Optimizing magnetic, dielectric, and antimicrobial performance in chitosan-PEG-Fe2O3@ NiO nanomagnetic composites. Int. J. Biol. Macromol.Macromol. 260, 129545 (2024). https://doi.org/10.1016/j.ijbiomac.2024.129545

    Article  CAS  Google Scholar 

  25. A.B. AbouHammad, B.A. Hemdan, A.M. Mansour, A.M. El Nahrawy, Improved antimicrobial and antibiofilm efficacy of adaptable BaTi2Fe4O11−(x)NiFe2O4 nanoceramics: investigating microstructural and spectroscopic analysis. SN Appl. Sci. 5(12), 317 (2023). https://doi.org/10.1007/s42452-023-05547-w

    Article  CAS  Google Scholar 

  26. A.M. Mansour, M. Morsy, A.M. El Nahrawy, A.B. AbouHammad, Humidity sensing using Zn(1.6–x)Na0.4CuxTiO4 spinel nanostructures. Sci. Rep. 14(1), 562 (2024). https://doi.org/10.1038/s41598-023-50888-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. P. Kulandaivelu, K. Sakthipandi, P.S. Kumar, V. Rajendran, Mechanical properties of bulk and nanostructured La0.61Sr0.39MnO3 perovskite manganite materials. J. Phys. Chem. Solids 74(2), 205–214 (2013). https://doi.org/10.1016/j.jpcs.2012.09.008

    Article  CAS  Google Scholar 

  28. A. Subalakshmi, B. Kavitha, N. Srinivasan, M. Rajarajan, A. Suganthi, An affordable efficient SrWO4 decorated Bi2O3 nanocomposite: Photocatalytic activity for the degradation of methylene blue under visible light irradiation. Mater. Today: Proc. 48, 409–419 (2022). https://doi.org/10.1016/j.matpr.2020.11.167

    Article  CAS  Google Scholar 

  29. K. Sakthipandi, B.G. Babu, G. Rajkumar, A. Hossian, M.S. Raghavan, M.R. Kumar, Investigation of magnetic phase transitions in Ni0.5Cu0.25Zn0.25Fe2xLaxO4 nanoferrites using magnetic and in-situ ultrasonic measurements. Physica B B 645, 414280 (2022). https://doi.org/10.1016/j.physb.2022.414280

    Article  CAS  Google Scholar 

  30. K.M. Batoo, D. Salah, G. Kumar, A. Kumar, M. Singh, M. Abd El-Sadek, F.A. Mir, A. Imran, D.A. Jameel, Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J. Magnetism Magn. Mater. 411, 91–97 (2016). https://doi.org/10.1016/j.jmmm.2016.03.058

    Article  CAS  Google Scholar 

  31. M. Madhu, A.V. Rao, D. Parajuli, S.Y. Mulushoa, N. Murali, Cr3+ substitution influence on structural, magnetic and electrical properties of the Ni0.3Zn0.5Co0.2Fe2-xCrxO4 (0.00≤ x≤ 0.20) nanosized spinel ferrites. Inorg. Chem. Commun.. Chem. Commun. 143, 109818 (2022). https://doi.org/10.1016/j.inoche.2022.109818

    Article  CAS  Google Scholar 

  32. H. Bhargava, N. Lakshmi, V. Sebastian, V.R. Reddy, K. Venugopalan, A. Gupta, Investigation of the large magnetic moment in nano-sized Cu0.25Co0.25Zn0.5Fe2O4. J. Phys. D Appl. Phys. 42(24), 245003 (2009). https://doi.org/10.1088/0022-3727/42/24/245003

    Article  CAS  Google Scholar 

  33. N. Chaibakhsh, Z. Moradi-Shoeili, Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): a review of synthesis, mechanism and potential applications. Mater. Sci. Eng. C 99, 1424–1447 (2019). https://doi.org/10.1016/j.msec.2019.02.086

    Article  CAS  Google Scholar 

  34. V.S. Shinde, V. Vinayak, S. P. Jadhav, N.D. Shinde, A.V. Humbe, K.M. Jadhav, Structure, Morphology, Cation distribution and magnetic properties of Cr3+-substituted CoFe2O4 nanoparticles. J. Supercond. Novel Magn.Supercond. Novel Magn. 32, 945–955 (2019). https://doi.org/10.1007/s10948-018-4778-5

    Article  CAS  Google Scholar 

  35. X. Li, P. Yu, X. Niu, H. Yamaguchi, D. Li, Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: experiment and simulation. J. Magn. Magn. Mater.Magn. Magn. Mater. 497, 165957 (2020). https://doi.org/10.1016/j.jmmm.2019.165957

    Article  CAS  Google Scholar 

  36. A.I. Ivanets, V. Srivastava, M.Y. Roshchina, M. Sillanpää, V.G. Prozorovich, V.V. Pankov, Magnesium ferrite nanoparticles as a magnetic sorbent for the removal of Mn2+, Co2+, Ni2+ and Cu2+ from aqueous solution. Ceram. Int. 44(8), 9097–9104 (2018). https://doi.org/10.1016/j.ceramint.2018.02.117

    Article  CAS  Google Scholar 

  37. M.A. Munir, M.Y. Naz, S. Shukrullah, M.T. Ansar, M.U. Farooq, M. Irfan, S.N.F. Mursal, S. Legutko, J. Petru, M. Pagác, Enhancement of magnetic and dielectric properties of Ni0.25Cu0.25Zn0.50Fe2O4 magnetic nanoparticles through non-thermal microwave plasma treatment for high-frequency and energy storage applications. Materials 15, 6890 (2022). https://doi.org/10.3390/ma15196890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. W.A. Farooq, M. SajjadUl Hasan, M.I. Khan, A.R. Ashraf, M. Abdul Qayyum, N. Yaqub, M.A. Almutairi, M. Atif, A. Hanif, Structural, optical and electrical properties of Cu0.6CoxZn0.4-xFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4) soft ferrites. Molecules (2021). https://doi.org/10.3390/molecules26051399

    Article  PubMed  PubMed Central  Google Scholar 

  39. T.J.B. Holland, S.A.T. Redfern, Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral. Mag. 61(404), 65–77 (1997). https://doi.org/10.1180/minmag.1997.061.404.07

    CAS  Google Scholar 

  40. F. Barkat, M. Afzal, B.S. Khan, A. Saeed, M. Bashir, A. Mukhtar, T. Mehmood, K. Wu, Formation mechanism and lattice parameter investigation for copper-substituted cobalt ferrites from zingiber officinale and elettaria cardamom seed extracts using biogenic route. Materials 15, 4374 (2022). https://doi.org/10.3390/ma15134374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A.A. Al-Juaid, M.A. Gabal, Effects of co-substitution of Al3+ and Cr3+ on structural and magnetic properties of nano-crystalline CoFe2O4 synthesized by the sucrose technique. J. Mater. Res. Technol. (2021). https://doi.org/10.1016/j.jmrt.2021.06.023

    Article  Google Scholar 

  42. A.M. Abu-Dief, W.S. Mohamed, α-Bi2O3 nanorods: synthesis, characterization and UV-photocatalytic activity. Mater. Res Exp. 4(3), 035039 (2017). https://doi.org/10.1088/2053-1591/aa6712

    Article  CAS  Google Scholar 

  43. E.M.M. Ibrahim, A.M. Abu-Dief, A. Elshafaie, A.M. Ahmed, Electrical, thermoelectrical and magnetic properties of approximately 20-nm Ni–Co–O nanoparticles and investigation of their conduction phenomena. Mater. Chem. Phys. 192, 41–47 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.054

    Article  CAS  Google Scholar 

  44. E.M.M. Ibrahim, L.H. Abdel-Rahman, A.M. Abu-Dief, A. Elshafaie, S.K. Hamdan, A.M. Ahmed, Electric, thermoelectric and magnetic characterization of γ-Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schiff base complexes. Mater. Res. Bull. 99, 103–108 (2018). https://doi.org/10.1016/j.materresbull.2017.11.002

    Article  CAS  Google Scholar 

  45. E.M.M. Ibrahim, L.H. Abdel-Rahman, A.M. Abu-Dief, A. Elshafaie, S.K. Hamdan, A.M. Ahmed, The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic Properties. Mater. Res. Bull. 107, 492–497 (2018). https://doi.org/10.1016/j.materresbull.2018.08.020

    Article  CAS  Google Scholar 

  46. L.H. Abdel Rahman, A.M. Abu-Dief, R.M. El-Khatib, S.M. Abdel-Fatah, A.M. Adam, E.M.M. Ibrahim, Sonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu (II), Co (II) and Ni (II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxides. Appl. Organomet. Chem.Organomet. Chem. 32(3), e4174 (2018). https://doi.org/10.1002/aoc.4174

    Article  CAS  Google Scholar 

  47. S. Singhal, S. Bhukal, Effect of chromium substitution on the structural, magnetic and electrical properties of nano crystalline Co0.6Zn0.4Cu0.2CrxFe1.8-xO4 Ferrite. Solid State Phenom. 202, 173–192 (2013). https://doi.org/10.4028/www.scientific.net/SSP.202.173

    Article  CAS  Google Scholar 

  48. K. Chandramouli, P.A. Rao, B. Suryanarayana, V. Raghavendra, S.J. Mercy, D. Parajuli, P. Taddesse, S.Y. Mulushoa, T.W. Mammo, N. Murali, Effect of Cu substitution on magnetic and DC electrical resistivity properties of Ni–Zn nanoferrites. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06127-7

    Article  Google Scholar 

  49. K. Chandramouli, V. Raghavendra, P.P. Varma, B. Suryanarayana, T.W. Mammo, D. Parajuli, P. Taddesse, and Murali, N, Influence of Cr3+-substituted Co0.7Cu0.3Fe2-xCrxO4 nano ferrite on structural, morphological, dc electrical resistivity and magnetic properties. Appl. Phys. A 127, 596 (2021). https://doi.org/10.1007/s00339-021-04750-z

    Article  CAS  Google Scholar 

  50. R. Jasrotia, S. Kour, P. Puri, A.D. Jara, B. Singh, C. Bhardwaj, V.P. Singh, R. Kumar, Structural and magnetic investigation of Al3+ and Cr3+ substituted Ni–Co–Cu nanoferrites for potential applications. Solid State Sci. 110, 106445 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106445

    Article  CAS  Google Scholar 

  51. H.R. Daruvuri, K. Chandu, N. Murali, D. Parajuli, M.P. Dasari, Effect on structural, dc electrical resistivity, and magnetic properties by the substitution of Zn2+ on Co-Cu nano ferrite. Inorg. Chem. Commun.. Chem. Commun. 143, 109794 (2022). https://doi.org/10.1016/j.inoche.2022.109794

    Article  CAS  Google Scholar 

  52. K.M. Batoo, Structural and electrical properties of Cu doped NiFe2O4 nanoparticles prepared through modified citrate gel method. J. Phys. Chem. Solids 72(12), 1400–1407 (2011). https://doi.org/10.1016/j.jpcs.2011.08.005

    Article  CAS  Google Scholar 

  53. P. Himakar, N. Murali, D. Parajuli, V. Veeraiah, K. Samatha, T.W. Mammo, K.M. Batoo, M. Hadi, E.H. Raslan, S.F. Adil, Magnetic and DC Electrical Properties of Cu Doped Co–Zn Nanoferrites. J. Electron. Mater. (2021). https://doi.org/10.1007/s11664-021-08760-8

    Article  Google Scholar 

  54. S. Qamar, M.N. Akhtar, K.M. Batoo, E.H. Raslan, Structural and magnetic features of Ce doped Co–Cu–Zn spinel nanoferrites prepared using sol gel self-ignition method. Ceram. Int. 46(10), 14481–14487 (2020). https://doi.org/10.1016/j.ceramint.2020.02.246

    Article  CAS  Google Scholar 

  55. W.S. Mohamed, N.M.A. Hadia, M. Alzaid, A.M. Abu-Dief, Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach. Solid State Sci. 125, 106841 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106841

    Article  CAS  Google Scholar 

  56. W.S. Mohamed, A.M. Abu-Dief, Impact of rare earth europium (RE-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2−xEuxO4 nanosystems. Ceram. Int. 46(10), 16196–16209 (2020). https://doi.org/10.1016/j.ceramint.2020.03.175

    Article  CAS  Google Scholar 

  57. W.S. Mohamed, M. Alzaid, M.S.M. Abdelbaky, Z. Amghouz, S. García-Granda, A.M. Abu-Dief, Impact of Co2+ substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticles. Nanomaterials 9(11), 1602 (2019). https://doi.org/10.3390/nano9111602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. A.M. Abu-Dief, M.S. Abdelbaky, D. Martínez-Blanco, Z. Amghouz, S. García-Granda, Effect of chromium substitution on the structural and magnetic properties of nanocrystalline zinc ferrite. Mater. Chem. Phys. Chem. Phys. 174, 164–171 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.065

    Article  CAS  Google Scholar 

  59. G.K. Sarveena, R.K. Arun Kumar, K.M. Kotnala, M.S. Batoo, Investigation of structural, magnetic and Mössbauer properties of Co2+ and Cu2+ substituted Ni–Zn nanoferrites. Ceram. Int. 42(4), 4993–5000 (2016). https://doi.org/10.1016/j.ceramint.2015.12.012

    Article  CAS  Google Scholar 

  60. B. Suryanarayana, P.P. Varma, P.S.V. Shanmukhi, M.G. Kiran, N. Murali, T.W. Mammo, V. Raghavendra, D. Parajuli, K.M. Batoo, S. Hussain, Comparison of the effect of Cr3+ substituted Co–Cu and Cu–Co nano ferrites on structural, magnetic, DC electrical resistivity, and dielectric properties. J. Mater. Sci. Mater. Electron. 35, 93 (2024). https://doi.org/10.1007/s10854-023-11808-6

    Article  CAS  Google Scholar 

  61. M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol-gel route. J. Magnetism Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.03.069

    Article  Google Scholar 

  62. R.H. Kadam, R.B. Borade, M.L. Mane, D.R. Mane, K.M. Batoo, S.E. Shirsath, Structural, mechanical, dielectric properties and magnetic interactions in Dy3+-substituted Co–Cu–Zn nanoferrites. RSC Adv. 10(47), 27911–27922 (2020). https://doi.org/10.1039/D0RA05274D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. P.S. Jadhav, K.K. Patankar, V. Puri, Structural, electrical and magnetic properties of Ni–Co–Cu–Mn ferrite thick films. Mater. Res. Bull. 75, 162–166 (2016). https://doi.org/10.1016/j.materresbull.2015.11.034

    Article  CAS  Google Scholar 

  64. Y. Vijapure, Synthesis and properties of Ho3+ Doped Co–Cr–Fe ferrite nanoparticles prepared by sol-gel chemical route. Int. J. Res. Appl. Sci. Biotechnol. 9(1), 203–206 (2022)

    Google Scholar 

  65. R.R. Akurati, N.K. Jaladi, S.R. Kurapati, G. Kapusetti, M. Choppadandi, P. Mandal, Preparation, characterization and study of magnetic induction heating of Co–Cu nanoparticles. Mater. Today Commun. 34, 104964 (2023). https://doi.org/10.1016/j.mtcomm.2022.104964

    Article  CAS  Google Scholar 

  66. R.S. Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1−xZnxFe2O4 (x=0.0, 0.5) spinel ferrite nanoparticles. J. Magnetism Magn. Mater. 447, 48–57 (2018). https://doi.org/10.1016/j.jmmm.2017.09.033

    Article  CAS  Google Scholar 

  67. M.P. Ghosh, S. Mukherjee, Microstructural, magnetic, and hyperfine characterizations of Cu-doped cobalt ferrite nanoparticles. J. Am. Ceram. Soc. 102(12), 7509–7520 (2019). https://doi.org/10.1111/jace.16687

    Article  CAS  Google Scholar 

  68. S. Rasheed, H.S. Aziz, R.A. Khan, A.M. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal, A.R. Khan, Effect of Li–Cu doping on structural, electrical and magnetic properties of cobalt ferrite nanoparticles. Ceram. Int. 42(2), 3666–3672 (2016). https://doi.org/10.1016/j.ceramint.2015.11.034

    Article  CAS  Google Scholar 

  69. C. Komali, N. Murali, K. Rajkumar, A. Ramakrishna, S. Yonatan Mulushoa, D. Parajuli, P.N.V.V.L. Pramila Rani, S. Ampolu, K. Chandra Mouli, Y. Ramakrishna, Probing the dc electrical resistivity and magnetic properties of mixed metal oxides Cr3+ substituted Mg–Zn ferrites. Chem. Papers 77(1), 109–117 (2023). https://doi.org/10.1007/s11696-022-02466-9

    Article  CAS  Google Scholar 

  70. M.A. Abdo, A.A. El-Daly, Sm-substituted copper-cobalt ferrite nanoparticles: Preparation and assessment of structural, magnetic and photocatalytic properties for wastewater treatment applications. J. Alloy. Compd. 883, 160796 (2021). https://doi.org/10.1016/j.jallcom.2021.160796

    Article  CAS  Google Scholar 

  71. E.E. Ateia, F.S. Soliman, Modification of Co/Cu nanoferrites properties via Gd3+/ Er3+doping. Appl. Phys. A 123, 312 (2017). https://doi.org/10.1007/s00339-017-0948-8

    Article  CAS  Google Scholar 

  72. T.B. Taha, A.A. Barzinjy, F.H.S. Hussain, T. Nurtayeva, Nanotechnology and computer science: trends and advances, memories - materials, devices. Circuits Syst. 2, 100011 (2022). https://doi.org/10.1016/j.memori.2022.100011

    Article  Google Scholar 

  73. H.B. Omietimi, S.A. Afolalu, J.F. Kayode, S.I. Monye, S.L. Lawal, M.E. Emetere, An overview of nanotechnology and its application. E3S Web Conf. 391, 01079 (2023). https://doi.org/10.1051/e3sconf/202339101079

    Article  Google Scholar 

  74. J. Mathew, J. Joy, S.C. George, Potential applications of nanotechnology in transportation: a review. J. King Saud Univ. Sci 31, 586–594 (2019). https://doi.org/10.1016/j.jksus.2018.03.015

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. J. Kishore Babu, Sk. Erfan, N. Revathi, K. Vagdevi, G. Srinivas Reddy, and M. V. N. V. Sharma prepared material, collected data, and analysed. J. Kishore Babu wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. Vagdevi.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Ethical approval

The authors certify that they have no financial or personal interests that compete with or appear to influence the research presented in this publication. There are no human or animal participants in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, J.K., Erfan, S., Revathi, N. et al. Enhanced magnetic properties of Co0.5Cu0.25Zn0.25Fe2-xCrxO4 nano ferrites. J Mater Sci: Mater Electron 35, 1441 (2024). https://doi.org/10.1007/s10854-024-13217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13217-9

Navigation