Skip to main content
Log in

Investigation on physical properties of CuO and SnO2: F mixed oxide sprayed thin films for photocatalytic application: coupling effect between oxides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article presents the synthesis and characterization of CuO–SnO2: F mixed oxide thin films using the spray pyrolysis technique on glass substrates. The study focuses on optimizing the structural, optical, and electrical properties of the films by varying the molar ratios of copper and tin. X-ray diffraction analysis confirmed the polycrystalline nature of the films, with a combination of monoclinic CuO and tetragonal SnO2 phases observed. AFM analysis show a remarkably rough surface with a pronounced roughness measuring approximately 150 nm. The band gap energy was found to vary from 3.95 to 3.57 eV as the molar ratio of tin decreased. The molar ratio also had a significant impact on the electrical properties of the films. Additionally, the photocatalytic activity of the optimized thin films was evaluated by measuring the degradation of MB dye under sunlight illumination. The results showed that the thin films prepared with a molar ratio of 75% copper exhibited higher photocatalytic activity compared to pure oxides. Furthermore, these films demonstrated higher stability after 5 cycles, with minimal changes observed in X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We have shown that photocatalytic degradation of organic dye is better, by using mixed oxide system, than that for each oxide separately (SnO2 and CuO). These findings suggest that the optimized CuO–SnO2: F mixed oxide thin films have potential use in photocatalysis devices for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data and materials related to this research are available from the relevant author, Ghofrane Charrada within reasonable range.

References

  1. M. Ajili, M. Castagné, N.K. Turki, Spray solution flow rate effect on groth, optoelectronic characteristics and photoluminescence of SnO2: F thin films for photovoltaic application. Optik (2015). https://doi.org/10.1016/j.ijleo.2015.02.039

    Article  Google Scholar 

  2. T. Soitah, Y. Chunhui, S. Liang, Structural, optical and electrical properties of Fe-doped SnO2 fabricated by sol–gel dip coating technique. Mater. Sci. Semicond. Process. (2010). https://doi.org/10.1016/j.mssp.2010.03.002

    Article  Google Scholar 

  3. N. Houaidji, M. Ajili, B. Chouial, N. Kamoun, Optoelectronic properties of fluorine and cobalt co-doped tin oxide thin films deposited by chemical spray pyrolysis. J. Nano. Res. (2019). https://doi.org/10.4028/www.scientific.net/JNanoR.60.63

    Article  Google Scholar 

  4. M. Dengkui, Z. Qingnan, W. Shuo, W. Zhendong, Z. Xingliang, Z. Xiujian, Effect of substrate temperature on the crystal growth orientation of SnO2: F thin films spray-deposited on glass substrates. J. Non Cryst. Solids (2010). https://doi.org/10.1016/j.jnoncrysol.2010.06.076

    Article  Google Scholar 

  5. A. Hassanien, H. Hashem, G. Kamel, S. Soltan, A. Moustafa, M. Hammam, A.A. Ramadan, Performance of transparent conducting fluorine doped tin oxide films for applications in energy efficient device. Int. J. Thin. Fil. Sci. (2016). https://doi.org/10.18576/ijtfst/050109

    Article  Google Scholar 

  6. G. Giusti, V. Consonni, E. Puyoo, High performance ZnO–SnO2: F nanocomposite transparent electrodes for energy applications. ACS Appl. Mater. Interfaces (2014). https://doi.org/10.1021/am5034473

    Article  PubMed  Google Scholar 

  7. V. Perumal et al., Electron-hole recombination effect of SnO2–CuO nanocomposite for improving methylene blue photocatalytic activity in wastewater treatment under visible light. J. King Saud Univ.-Sci. (2023). https://doi.org/10.1016/j.jksus.2022.102388

    Article  Google Scholar 

  8. H.B. Saàd, M. Ajili, S. Dabbabi, N.T. Kamoun, Investigation on thickness and annealing effects on physical circuit model of CuO sprayed thin films. Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi

    Article  Google Scholar 

  9. S.R. Alizadeh, M.A. Ebrahimzadeh, Characterization and Anticancer Activities of Green Synthesized CuO Nanoparticles. Anti-Cancer Agents in Med. Chem. (2021). https://doi.org/10.2174/1871520620666201029111532

    Article  Google Scholar 

  10. G.G. Welegergs et al., Electrodeposition of nanostructured copper oxide (CuO) coatings as spectrally solar selective absorber: structural, optical and electrical properties. Infrared Phys. Technol. (2023). https://doi.org/10.1016/j.infrared.2023.104820

    Article  Google Scholar 

  11. J.E. Casillas, F. Tzompantzi, G.G. Carbajal-Arizaga, J. Aguilar-Martinez et al., Coupled Al-Ga-xAg composites prepared by the sol–gel method and their efficient photocatalytic performance in the degradation of diclofenac. Surf. Interface J. (2022). https://doi.org/10.1016/j.surfin.2022.101809

    Article  Google Scholar 

  12. R. Saravanan, H. Shankar, T. Parakash, V. Narayanan, A. Stephen, ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater. Chem. Phys. J. (2011). https://doi.org/10.1016/j.matchemphys.2010.09.030

    Article  Google Scholar 

  13. O. Długosz, K. Szostak, M. Krupinski, M. Banach, Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes. Intern J of Environ Sci and Technolo (2021). https://doi.org/10.1007/s13762-020-02852-4

    Article  Google Scholar 

  14. R. Stanley, A. Jebasingh, V.S. Manisha, Enhanced sunlight photocatalytic degradation of methylene blue by rod-like ZnO-SiO2 nanocomposite. Optik (2019). https://doi.org/10.1016/j.ijleo

    Article  Google Scholar 

  15. H.R. Poureteda, Z. Tofangsazi, M.H. keshavarz, Photocatalytic activity of mixture of ZrO2/SnO2, ZrO2/CeO2 and SnO2/CeO2 nanoparticles. J of Alloys and Compounds (2012). https://doi.org/10.1016/j.jallcom

    Article  Google Scholar 

  16. B.Y. Valles-Pérez, M.A. Badillo-Ávila, G. Torres-Delgado, R. Castanedo-Pérez, O. Zelaya-Ángel, Photocatalytic activity of ZnO + CuO thin films deposited by dip coating: coupling effect between oxides. J. Sol-Gel Sci. Technol. (2020). https://doi.org/10.1007/s10971-020-05223-0

    Article  Google Scholar 

  17. S. Sharma, N. Kumar, P.R. Makgwane, N.S. Chuhan, K. Kumari, M. Rani, S. Maken, TiO2/SnO2 nano-composite: New insights in synthetic, structural, optical and photocatalytic aspects. Inorg. Chimica Acta J. (2022). https://doi.org/10.1016/j.ica.2021.120640

    Article  Google Scholar 

  18. L. Gnanasekaran, S. Rajendran, P.S. Kumar, A.K. Priya, F. Gracia, M.A. Habila, K.S. Kumar, Visible light stimulated binary nanostructure and defect enriched TiO2-SnO2 for photocatalysis and antibacterial activity. Mater. Lett. J. (2022). https://doi.org/10.1016/j.matlet.2022.131998

    Article  Google Scholar 

  19. S.B. Dhage, V.L. Patil, P.S. Patil, J. Ryu, D.R. Patil et al., Synthesis and characterization of CuO-SnO2 nanocomposite for CO gas sensing application. Mater. Lett. (2021). https://doi.org/10.1016/j.matlet.2021.130831

    Article  Google Scholar 

  20. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, N. Yamazoe et al., Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method. Sensors and Actuators B: Chem. (1998). https://doi.org/10.1016/S0925-4005(98)00144-0

    Article  Google Scholar 

  21. R. Kumar, A. Khanna, P. Tripathi, R.V. Nandedkar, S.R. Potdar, S.M. Chaudhari et al., CuO–SnO2 element as hydrogen sulfide gas sensor prepared by a sequential electron beam evaporation technique. J. Phys. D Appl. Phys. (2003). https://doi.org/10.1088/0022-3727/36/19/010

    Article  Google Scholar 

  22. S. Singh, N. Verma, A. Singh et al., Synthesis and characterization of CuO–SnO2 nanocomposite and its application as liquefied petroleum gas sensor. Mater. Sci. Semicond. Process. (2014). https://doi.org/10.1016/j.mssp.2013.11.002

    Article  Google Scholar 

  23. K. Reichelt, X. Jiang, The preparation of thin films by physical vapour deposition methods. Thin Solid Films (1998). https://doi.org/10.1016/0040-6090(90)90277-K

    Article  Google Scholar 

  24. A. Bouzidi, N. Benramdane, A. Nakrela, C. Mathieu, B. Khelifa, R. Desfeux, A. Da Costa, First synthesis of vanadium oxide thin films by spray pyrolysis technique. Mater. Sci. Eng. B (2002). https://doi.org/10.1016/S0921-5107(02)00224-6

    Article  Google Scholar 

  25. M. Ajili, S. Dabbabi, N. Bouarissa, N.T. Kamoun, Investigation on substrat effect on physical characteristics of CuO- Sprayed thin films suitable for photovoltaic application: Ag/ZnO: Sn(n)/CuO(p)/SnO2: F. Mater. Techno. J. (2020). https://doi.org/10.1080/10667857.2020.1854516

    Article  Google Scholar 

  26. Z. Mahmoudiamirabad, H. Eshghi, Achievements of high figure of merit and infra-red reflectivity in SnO2: F thin films using spray pyrolysis technique. Superlattices and Microstruct. J. (2021). https://doi.org/10.1016/J.SPMI.2021.106855

    Article  Google Scholar 

  27. P. Karthick, K. Saravanakumar, C. Sanjeeviraja, K. Jeyadheepan, Realization of highly conducting and transparent SnO2 thin films by optimizing F/Sn molar ratio for electrochemical applications. Thin Solid Films (2020). https://doi.org/10.1016/j.tsf.2020.138362

    Article  Google Scholar 

  28. S.K. Shinde, S.M. Mohite, A.A. Kadam, H.M. Yadav, G.S. Ghodake, K.Y. Rajpure, D.S. Lee, D.Y. Kim, Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher super-capacitor performance. J. Electro. Chem. (2019). https://doi.org/10.1016/j.jelechem.2019.113433

    Article  Google Scholar 

  29. M. Ajili, M. Castagné, N.K. Turki, Characteristics of CuIn1-xGaxS2 thin films synthesized by chemical spray pyrolysis. J. Lumin. (2014). https://doi.org/10.1016/J.JLUMIN.2013.12.059

    Article  Google Scholar 

  30. R. Ayed, M. Ajili, Y. Pineiro, J. Rivas, N.T. Kamoun, First investigation on (Ni, Co) co-doping effects on the physical properties of Fe2O3 thin films for optoelectronic applications. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.164645

    Article  Google Scholar 

  31. N. Kothawad, J. Borse, A. Patil, MoO3:In2O3 binary oxide thin films as CO gas sensor. Int. J. Microstruct. Mater. Prop. (2020). https://doi.org/10.1504/IJMMP.2020.110525

    Article  Google Scholar 

  32. P. Karthick, D. Vijayanarayanan, S. Suja, M. Sridharan, K. Jeyadheepan, Opto-electronic properties of fluorine doped tin oxide films deposited by nebulized spray pyrolysis method. Asian J. Appl. Sci. (2015). https://doi.org/10.3923/ajaps.2015.259.268

    Article  Google Scholar 

  33. O. Elsherif, G.E.A. Muftah, O. Abubaker, I.M. Dharmadasa, Structural, optical and electrical properties of SnO2: F thin films deposited by spray pyrolysis for application in thin film solar cells. J. Mater. (2016). https://doi.org/10.1007/s10854-016-5206-x

    Article  Google Scholar 

  34. H. Miranda, S. Velumani, C.S. Pérez, J.C. Krause, F. D’Souza, E. De Obaldía, E. Ching-Prado, Effects of changes on temperature and fluorine concentration in the structural, optical and electrical properties of SnO2: F thin films. J. Mater. (2019). https://doi.org/10.1007/s10854-019-01933-6

    Article  Google Scholar 

  35. M. Aouaj, R. Diaz, A. Belayachi, F. Rueda, M. Abd-Lefdil, Comparative study of ITO and FTO thin films grown by spray pyrolysis. Mater. Res. Bull. (2009). https://doi.org/10.1016/j.materresbull.2009.02.019

    Article  Google Scholar 

  36. S. Dolai, R. Dey, S. Hussain, R. Bhar, A.K. Pal, Photovoltaic properties of F: SnO2/CdS/CuO/Ag heterojunction solar cell. Mater. Res. Bull. (2019). https://doi.org/10.1016/j.materresbull.2018.09.022

    Article  Google Scholar 

  37. A. Axelevitch, G. Golan, Hot-probe method for evaluation of majority charged carriers concentration in semiconductor thin films. Electron. Energ. (2013). https://doi.org/10.2298/FUEE1303187A

    Article  Google Scholar 

  38. M. Ajili, R.B. Ayed, N.T. Kamoun, Structural, optical, photoluminescence and electrical properties of p–CuO/n–ZnO: Sn and p-CuO/n–Fe2O3 efficient hetero-junctions for optoelectronic applications. J. Lumin. (2022). https://doi.org/10.1016/j.jlumin.2021.118457

    Article  Google Scholar 

  39. P. Maji, A. Ray, P. Sadhukhan, S. Chatterjee, S. Das, Study on charge transfer mechanism and dielectric relaxation of cesium lead bromide (CsPbBr 3). J. Appl. Phys. (2018). https://doi.org/10.1063/15026038

    Article  Google Scholar 

  40. M.A. Ali, M.N.I. Khan, F.U.Z. Chowdhury, S. Akhter, M.M. Uddin, Structural properties impedance spectroscopy and dielectric spin relaxation of ni-zn ferrite synthesized by double sintering technique. J. Sci. Res. (2015). https://doi.org/10.3329/jsr.v7i3.23358

    Article  Google Scholar 

  41. D. Singh, N. Ali, Sci. Adv. Mater. (2010). https://doi.org/10.1166/SAM.2010.1095

    Article  Google Scholar 

  42. H. Bendjedidi, A. Attaf, H. Saidi, M.S. Aida, S. Semmari, A. Bouhdjar, Y. Benkhetta, Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications. J. Semicond. (2015). https://doi.org/10.1088/1674-4926/36/12/123002

    Article  Google Scholar 

  43. Mert, M. Selcuk. (2016) "GRAIN SIZE DEPENDENCE OF THE ELECTRICAL AND OPTICAL PROPERTIES OF THE SPRAYED Cd0. 5Zn0. 5S: B FILMS DEVELOPED IN SCIENCE PARKS." JOURNAL OF NON-OXIDE GLASSES.

  44. A. Houas, H. Lchheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. (2001). https://doi.org/10.1016/S0926-3373(00)00276-9

    Article  Google Scholar 

  45. A. Goktas, S. Modanlı, A. Tumbul, A. Kilic, Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homo junction thin films: role of crystallite/grain size and microstrain in photocatalytic performance. J. Alloy. Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.162334

    Article  Google Scholar 

  46. M. Chahkandi, M. Zargazi, Water EPD based of 2D-Bi2WO6 ultrathin film on innovative designed substrates: efficient photocatalytic degradation of binary antibiotics. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116153

    Article  Google Scholar 

  47. R.B. Ayed, M. Ajili, Y. Pineiro, B. Alhalaili, J. Rivas, R. Vidu, S. Kouass, N.K. Turki, Effect of Mg doping on the physical properties of Fe2O3 thin films for photocatalytic devices. Nanomaterials (2022). https://doi.org/10.3390/nano12071179

    Article  PubMed  PubMed Central  Google Scholar 

  48. A.T. Babu, R. Antony, Herbal synthesis of integrated binary semiconductor nanocomposites of silver doped CuO with ZnO/SnO2 for antibacterial activities and photocatalytic degradation of organic dyes. J. Iran. Chem. Soc. (2022). https://doi.org/10.1007/s13738-022-02618-4

    Article  Google Scholar 

  49. A. Yousefi, A. Nezamzadeh-Ejhieh, M. Mirmohammadi, the coupled CuO–SnO2 catalyst characterisation and the photodegradation kineticks towards phenazopyridine. Environ. Technol. Innov. (2021). https://doi.org/10.1016/j.eti.2021.101496

    Article  Google Scholar 

  50. M.S. AlSalhi, S. Devanesan, N.N. Asemi, M. Aldawsari, Construction of SnO2/CuO/rGO nanocomposites for photocatalytic degradation of organic pollutants and antibacterial applications. Environ. Res. (2023). https://doi.org/10.1016/j.envres.2023.115370

    Article  PubMed  Google Scholar 

  51. A. Kumar, L. Rout, L.S.K. Achary, A. Mohanty, J. Marpally, P.K. Chand, P. Dash, Design of Binary SnO2-CuO Nanocomposite for Efficient Photocatalytic Degradation of Malachite Green Dye. AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4945147

    Article  Google Scholar 

  52. R. Jiang, H.Y. Zhu, Y.J. Guan, Y.Q. Fu, L. Xiao, Q.Q. Yuan, S.T. Jliang, Effective decolorization of azo dye utilizing SnO2/CuO/polymer films under simulatedsolar light irradiation. Chem. Eng. Technol. (2011). https://doi.org/10.1002/ceat.201000340

    Article  Google Scholar 

  53. A. Khan, I. Ullah, A.U. Khan, B. Ahmad, K.M. Katubi, N.S. Alsaiari, M. Saleem, M.Z. Ansari, J. Liu, Photocatalytic degradation and electrochemical energy storage properties of CuO/SnO2 nanocomposites via the wet-chemical method. Chemosphere (2023). https://doi.org/10.1016/j.chemosphere.2022.137482

    Article  PubMed  Google Scholar 

  54. H.L. Xia, H.S. Zhuang, T. Zhang, D.C. Xiao, Photocatalytic degradation of acid blue 62 over CuO-SnO2 nanocomposite photocatalyst under simulated sunlight. J. Environ. Sci. (2007). https://doi.org/10.1016/S1001-0742(07)60186-7

    Article  Google Scholar 

  55. H. Li et al., Free-standing and flexible Cu/Cu2O/CuO heterojunction net: A novel material as cost-effective and easily recycled visible-light photocatalyst. Appl. Catal. B Environ. (2017). https://doi.org/10.1016/j.apcatb.2017.02.013

    Article  Google Scholar 

  56. K. Arik et al., Morphological effects on the photocatalytic properties of SnO2 nanostructures. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.151718

    Article  Google Scholar 

Download references

Funding

The authors do not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated to the development of this work. Contribution to the experimental study, search information and results discussion were effected by G. Charrada, M. Ajili, N. Jebbari and N. Kamoun. The first copy of the manuscript was written by G. Charrada and all authors contributed to the correction of this manuscript. All authors approved the final version of this article.

Corresponding author

Correspondence to Ghofrane Charrada.

Ethics declarations

Conflict of interest

The authors have no relation with financial or non-financial interests to be reported.

Ethical approval

The authors agree with conformance with the Ethical standards of Material Science Journal: Materials in Electronics. The authors report that this article is compliant with ethical standards and does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charrada, G., Ajili, M., Jebbari, N. et al. Investigation on physical properties of CuO and SnO2: F mixed oxide sprayed thin films for photocatalytic application: coupling effect between oxides. J Mater Sci: Mater Electron 35, 685 (2024). https://doi.org/10.1007/s10854-024-12453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12453-3

Navigation