Skip to main content

Advertisement

Log in

Uncertain random portfolio optimization with non-dominated sorting genetic algorithm-II and optimal solution criterion

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The complexity of the financial systems inevitably leads to the uncertain information and random information simultaneously. Because asset returns frequently show excessive kurtosis and tend to be skewed, we consider an uncertain random higher moments portfolio optimization problem in this paper, in which uncertain and random return rates exist simultaneously. First, the concept of kurtosis for uncertain random variable is defined and the deterministic expressions of kurtosis under three kinds of distributions are derived. Then, an uncertain random mean-variance-skewness-kurtosis-entropy model is formulated with two auxiliary models for portfolio optimization problem. After solving the equivalent deterministic model with NSGA-II algorithm, we propose a new optimal solution criterion for finding a single optimal solution in Pareto optimal solution set. Finally, we present a numerical simulation and obtain the following results: (i) the practicability and the validity of the proposed model, the NSGA-II algorithm and the optimal selection criterion have verified; (ii) the size of population has an obvious influence on the single optimal solution; (iii) the parameter adjustment has a significant impact on the results, and the results are in perfect agreement with the actual situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availibility

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  • Ahmadzade H, Gao R, Dehghan MH (2018) Partial triangular entropy of uncertain random variables and its application. J Amb Intel Hum Comp 9(5):1455–1464

    Google Scholar 

  • Arditti FD (1971) Another look at mutual fund performance. J Financ Quant Anal 6(3):909–912

    Google Scholar 

  • Chang J-H, Sun L, Zhang B, Peng J (2020) Multi-period portfolio selection with mental accounts and realistic constraints based on uncertainty theory. J Comput Appl Math 377:112892

    MathSciNet  MATH  Google Scholar 

  • Chen S-X (2008) Nonparametric estimation of expected shortfall. J Financ Economet 6(1):87–107

    MathSciNet  Google Scholar 

  • Chen W, Yun W, Zhang J, Lu S (2017) Uncertain portfolio selection with high-order moments. J Intell Fuzzy Syst 33(3):1397–1411

    MATH  Google Scholar 

  • Chen W, Wang Y, Gupta P, Mehlawat MK (2018) A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints. Appl Intell 48(9):2996–3018

    Google Scholar 

  • Chen W, Li D, Liu Y-J (2019) A novel hybrid ICA-FA algorithm for multi-period uncertain portfolio optimization model based on multiple criteria. IEEE T Fuzzy Syst 27(5):1023–1036

    Google Scholar 

  • Clarke RG, Harindra DS, Steven T (2006) Minimum-variance portfolios in the US equity market. J Portfolio Manage 33(1):10–24

    Google Scholar 

  • Deb K, Agrawal S, Pratab A, Meyunivan T (2002) A fast elitist non-dominated sorting algorithm for multi-objective optimization NSGA-II. IEEE T Evolut Comput 6:182–197

    Google Scholar 

  • Demiguel V, Garlappi L, Nogales FJ, Uppal R (2009) A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Manag Sci 55(5):798–812

    MATH  Google Scholar 

  • Deng X, Li R (2012) A portfolio selection model with borrowing constraint based on possibility theory. Appl Soft Comput 12(2):754–758

    MathSciNet  Google Scholar 

  • Deng X, Liu Y-L (2018) A high-moment trapezoidal fuzzy random portfolio model with background risk. J Sys Sci Info 6(1):1–28

    Google Scholar 

  • Dhanalakshmi S, Kannan S, Mahadevan K, Baskar S (2011) Application of modified NSGA-II algorithm to combined economic and emission dispatch problem. Int J Elec Power 33(4):992–1002

    Google Scholar 

  • El-Abbasy MS, Elazouni A, Zayed T (2020) Finance-based scheduling multi-objective optimization: benchmarking of evolutionary algorithms. Automat Constr 120:103392

    Google Scholar 

  • Hao F-F, Liu Y-K (2009) Mean-variance models for portfolio selection with fuzzy random returns. J Appl Math Comput 30(1):9–38

    MathSciNet  MATH  Google Scholar 

  • Harvey CR, Liechty J, Liechty M, Muller P (2010) Portfolio selection with higher moments. Quant Financ 10(5):469–485

    MathSciNet  MATH  Google Scholar 

  • Huang X-X (2007) A new perspective for optimal portfolio selection with random fuzzy returns. Inf Sci 177(23):5404–5414

    MathSciNet  MATH  Google Scholar 

  • Huang X-X, Jiang G-W (2021) Portfolio management with background risk under uncertain mean-variance utility. Fuzzy Optim Decis Mater 20(3):315–330

    MathSciNet  MATH  Google Scholar 

  • Huang X-X, Wang X-T (2021) International portfolio optimization based on uncertainty theory. Optimization 70(2):225–249

    MathSciNet  MATH  Google Scholar 

  • Kannan S, Baskar S, Mccalley JD (2009) Application of NSGA-II algorithm to generation expansion planning. IEEE Trans Power Syst 24(1):454–461

    Google Scholar 

  • Konno H, Suzuki KI (1995) A mean-variance-skewness portfolio optimization model. J Oper Res Soc Jpn 38(2):173–187

    MATH  Google Scholar 

  • Konno H, Shirakawa H, Yamazaki H (1993) A mean-absolute deviation-skewness portfolio optimization model. Ann Oper Res 45(1):205–220

    MathSciNet  MATH  Google Scholar 

  • Kwakernaak H (1978) Fuzzy random variables-I. definitions and theorems. Inf Sci 15(1):1-29

  • Li B, Shu Y-D (2022) The skewness for uncertain random variable and application to portfolio selection problem. J Manag Optim 18(1):457–467

    MathSciNet  MATH  Google Scholar 

  • Li J, Xu J-P (2009) A novel portfolio selection model in a hybrid uncertain environment. Omega Int J Manag Sci 37(2):439–449

    Google Scholar 

  • Li B, Zhang R-R (2021) A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification. Chaos Soliton Fract 146:110842

    MathSciNet  MATH  Google Scholar 

  • Li B, Zhu Y-G, Sun Y-F, Aw G, Teo KL (2018) Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Appl Math Model 56:539–550

    MathSciNet  MATH  Google Scholar 

  • Liu B-D (2007) Uncertainty theory, 2nd edn. Springer, Berlin, pp 1–79

    Google Scholar 

  • Liu B-D (2009) Some research problems in uncertainty theory. J Uncertainity Syst 3(1):3–10

    MathSciNet  Google Scholar 

  • Liu B-D (2010) Uncertainty theory: a branch of mathematics for modeling human uncertainty. Springer, Berlin

    Google Scholar 

  • Liu Y-H (2013) Uncertain random variables: a mixture of uncertainty and randomness. Soft Comput 17(4):625–634

    MATH  Google Scholar 

  • Liu S, Wang S-Y, Qiu W (2003) Mean-variance-skewness model for portfolio selection with transaction costs. Int J Syst Sci 34(4):255–262

    MathSciNet  MATH  Google Scholar 

  • Liu X-M, Latif Z, Wang C-F, Latif S, Wang X (2018) Mean-variance-kurtosis hybrid multi-objective portfolio optimization model with a defined investment ratio. J Eng Technol 6(1):293–306

    Google Scholar 

  • Mardia KV (1970) Measures of multivariate skewness and kurtosis with applications. Biometrika 57(3):519–530

    MathSciNet  MATH  Google Scholar 

  • Maringer D, Parpas P (2009) Global optimization of higher order moments in portfolio selection. J Global Optim 43(2):219–230

    MathSciNet  MATH  Google Scholar 

  • Markowitz HM (1952) Portfolio selection. J Financ 7(1):977–91

    Google Scholar 

  • Martel JM, Khoury NT, Bergeron M (1988) An application of a multicriteria approach to portfolio comparisons. J Oper Res Soc 39(7):617–628

    Google Scholar 

  • Mehlawat MK, Gupta P, Khan AZ (2021) Portfolio optimization using higher moments in an uncertain random environment. Inf Sci 567:348–374

    MathSciNet  Google Scholar 

  • Mittal SK, Srivastava N (2021) Mean-variance-skewness portfolio optimization under uncertain environment using improved genetic algorithm. Artif Intell Rev 54(8):6011–6032

    Google Scholar 

  • Pahade JK, Jha M (2021) Credibilistic variance and skewness of trapezoidal fuzzy variable and mean-variance-skewness model for portfolio selection. Results Math 11:100159

    MathSciNet  MATH  Google Scholar 

  • Qin Z-F (2015) Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns. Eur J Oper Res 245(2):480–488

    MathSciNet  MATH  Google Scholar 

  • Qin Z-F, Kar S, Zheng H (2016) Uncertain portfolio adjusting model using semiabsolute deviation. Soft Comput 20(3):717–725

    MATH  Google Scholar 

  • Qin Z, Dai Y, Zheng H (2017) Uncertain random portfolio optimization models based on value-at-risk. J Intell Fuzzy Syst 32(6):4523–4531

    Google Scholar 

  • Rui Q, Hao F-F (2008) Computing the mean chance distributions of fuzzy random variables. J Uncertain Syst 2(4):299–312

    Google Scholar 

  • Samuelson P (1970) The fundamental approximation theorem of portfolio analysis in terms of means, variances and higher moments. Rev Econ Stud 37(4):537–542

    Google Scholar 

  • Sanford A (2022) Optimized portfolio using a forward-looking expected tail loss. Financ Res Lett 46:102421

    Google Scholar 

  • Sheng Y-H, Yao K (2014) Some formulas of variance of uncertain random variable. J Uncertain Anal Appl 2(1):1–10

    MathSciNet  Google Scholar 

  • Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Google Scholar 

  • Sun Y-F, Aw G, Teo KL, Zhou G-L (2015) Portfolio optimization using a new probabilistic risk measure. J Ind Manag Optim 11(4):1275–1283

    MathSciNet  MATH  Google Scholar 

  • Tasche D (2002) Expected shortfall and beyond. J Bank Financ 26(7):1519–1533

    MATH  Google Scholar 

  • Wilcox J (2020) Better portfolios with higher moments. J Asset Manag 21(7):569–580

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8(3):338–353

    MATH  Google Scholar 

  • Zhai J, Bai M (2018) Mean-risk model for uncertain portfolio selection with background risk. J Comput Appl Math 330:59–69

    MathSciNet  MATH  Google Scholar 

  • Zhang P (2016) Multiperiod mean absolute deviation uncertain portfolio selection. Soft Comput 15(1):1–18

    Google Scholar 

  • Zhang Q-F, Hui L (2008) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11(6):712–731

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangsu Province (Nos. BK20190787 and BK20210605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The proof of Theorem 2

Proof

Based on Definition 5 in Liu (2013a) and Definition 3, we have

$$\begin{aligned} K[\eta ]=\displaystyle \int _{0}^{+\infty }Ch\left\{ \left( \eta -E\left[ \eta \right] \right) ^{4}\ge r\right\} \textrm{d}r-\displaystyle \int _{-\infty }^{0}Ch\left\{ \left( \eta -E\left[ \eta \right] \right) ^{4}\le r\right\} \textrm{d}r, \end{aligned}$$

where Ch is the chance measure of uncertain random event. Because \(\left( \eta -E[\eta ]\right) ^{4}\) is non-negative, it holds that

$$\begin{aligned} K[\eta ]&=\displaystyle \int _{0}^{+\infty }Ch\left\{ \left( \eta -E\left[ \eta \right] \right) ^{4}\ge r\right\} \textrm{d}r\\[4pt]&=\displaystyle \int _{0}^{+\infty }Ch\left\{ \left( \eta \ge E\left[ \eta \right] +\root 4 \of {r}\right) \cup \left( \eta \le E\left[ \eta \right] -\root 4 \of {r}\right) \right\} \textrm{d}r\\[4pt]&\le \displaystyle \int _{0}^{+\infty }Ch\left\{ \eta \ge E\left[ \eta \right] +\root 4 \of {r}\right\} \textrm{d}r+\displaystyle \int _{0}^{+\infty }Ch\left\{ \eta \le E\left[ \eta \right] -\root 4 \of {r}\right\} \textrm{d}r. \end{aligned}$$

Here, it follows from Stipulation 2.3 in Liu (2007) that

$$\begin{aligned} K[\eta ]&=\displaystyle \int _{0}^{+\infty }Ch\left\{ \eta \ge E\left[ \eta \right] +\root 4 \of {r}\right\} \textrm{d}r+\displaystyle \int _{0}^{+\infty }Ch\left\{ \eta \le E\left[ \eta \right] -\root 4 \of {r}\right\} \textrm{d}r\\[4pt]&=\displaystyle \int _{0}^{+\infty }\left[ 1-\Psi \left( E\left[ \eta \right] +\root 4 \of {r}\right) \right] \textrm{d}r+\displaystyle \int _{0}^{+\infty }\Psi \left( E\left[ \eta \right] -\root 4 \of {r}\right) \textrm{d}r. \end{aligned}$$

Letting \(x=E[\eta ]+\root 4 \of {r}\) (\(r=\left( x-E[\eta ]\right) ^{4}\)) and taking integration by parts, we have

$$\begin{aligned} K[\eta ]&=\displaystyle \int _{0}^{+\infty }\left[ 1-\Psi \left( E\left[ \eta \right] +\root 4 \of {r}\right) \right] \textrm{d}r+\displaystyle \int _{0}^{+\infty }\Psi \left( E\left[ \eta \right] -\root 4 \of {r}\right) \textrm{d}r\\[4pt]&=\displaystyle \int _{E\left[ \eta \right] }^{+\infty }\left( 1-\Psi \left( x\right) \right) \textrm{d}\left( x-E[\eta ]\right) ^{4}+\displaystyle \int _{E[\eta ]}^{-\infty }\Psi \left( x\right) \textrm{d}\left( x-E[\eta ]\right) ^{4}\\[4pt]&=\left( 1-\Psi \left( x\right) \right) \left( x-E[\eta ]\right) ^{4}\mid ^{+\infty }_{E[\eta ]}-\displaystyle \int _{E[\eta ]}^{+\infty }\left( x-E[\eta ]\right) ^{4}\textrm{d}\left( 1-\Psi (x)\right) \\[4pt]&\quad +\Psi \left( x\right) \left( x-E[\eta ]\right) ^{4}\mid ^{-\infty }_{E[\eta ]}-\displaystyle \int _{E[\eta ]}^{-\infty }\left( x-E[\eta ]\right) ^{4}\textrm{d}\Psi \left( x\right) \\[4pt]&=\displaystyle \int _{E[\eta ]}^{+\infty }\left( x-E[\eta ]\right) ^{4}\textrm{d}\Psi \left( x\right) +\displaystyle \int _{-\infty }^{E[\eta ]}\left( x-E[\eta ]\right) ^{4}\textrm{d}\Psi \left( x\right) \\[4pt]&=\displaystyle \int _{-\infty }^{+\infty }\left( x-E[\eta ]\right) ^{4}\textrm{d}\Psi (x). \end{aligned}$$

The proof is completed. \(\square\)

The proof of Theorem 3

Proof

According to Definition 3, we have

$$\begin{aligned} K[a\eta +b]&=E\displaystyle \left[ \displaystyle \left[ \left( a\eta +b\right) -E\left[ a\eta +b\right] \displaystyle \right] ^{4}\displaystyle \right] \\[6pt]&=E\displaystyle \left[ \displaystyle \left[ (a\eta +b)-\displaystyle \left( aE[\eta ]+b\displaystyle \right) \displaystyle \right] ^{4}\displaystyle \right] \\[6pt]&=E\displaystyle \left[ \displaystyle \left( a\eta -aE[\eta ]+b-b\displaystyle \right) ^{4}\displaystyle \right] \\[6pt]&=E\displaystyle \left[ a^{4}\displaystyle \left( \eta -E[\eta ]\displaystyle \right) ^{4}\displaystyle \right] \\[6pt]&=a^{4}E\displaystyle \left[ (\eta -E[\eta ])^{4}\displaystyle \right] \\[6pt]&=a^{4}K[\eta ]. \end{aligned}$$

The proof is completed. \(\square\)

The proof of Theorem 7

Proof

We construct a Lagrange function to calculate the maximum value of investment diversification in (5.8)

$$\begin{aligned} L(u_{1},u_{2},\cdots ,u_{m},u_{m+1},u_{m+2},\cdots ,u_{m+n},\lambda )&=L(x_{1},x_{2},\cdots ,x_{m},y_{1},x_{2},\cdots ,y_{n},\lambda )\\[6pt]&=-\sum \limits _{i=1}^{m+n}u_{i}\ln (u_{i}+\varepsilon )+\lambda (\sum \limits _{i=1}^{m+n}u_{i}-1). \end{aligned}$$

Taking the partial derivatives of \(L(u_{1},u_{2},\cdots ,u_{m},u_{m+1},u_{m+2},\cdots ,u_{m+n},\lambda )\) with respect to \(u_{1},u_{2},\) \(\cdots ,u_{m+n}\) and \(\lambda\), we can get

$$\begin{aligned}&\displaystyle \frac{\partial L(u_{1},u_{2},\cdots ,u_{m},u_{m+1},u_{m+2},\cdots ,u_{m+n},\lambda )}{\partial u_{i}}=-\ln (u_{i}+\varepsilon )-\displaystyle \frac{u_{i}}{u_{i}+\varepsilon }+\lambda , i=1,2,\cdots ,m+n,\\&\displaystyle \frac{\partial L(u_{1},u_{2},\cdots ,u_{m},u_{m+1},u_{m+2},\cdots ,u_{m+n},\lambda )}{\partial \lambda }=\sum \limits _{i=1}^{m+n}u_{i}-1. \end{aligned}$$

Then, set all the partial derivatives equal to zero, it follows that

$$\begin{aligned}&\ln \left( \displaystyle \frac{u_{i}+\varepsilon }{u_{j}+\varepsilon } \right) +\displaystyle \frac{u_{i}}{u_{i}+\varepsilon }-\displaystyle \frac{u_{j}}{u_{j}+\varepsilon }=0, i,j=1,2,\cdots ,m+n,\\&\sum \limits _{i=1}^{m+n}u_{i}-1=0. \end{aligned}$$

We can get the result that \(u_{1}=u_{2}=\cdots =u_{m+n}=\displaystyle \frac{1}{m+n}\), and the maximum value of the corresponding investment diversification is \(-\ln \left( \displaystyle \frac{1}{m+n}+\varepsilon \right)\). Conversely, when investors invest all their assets in a single asset, the value of investment diversification will reach a minimum of zero. The proof is completed. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, B., Jin, T. et al. Uncertain random portfolio optimization with non-dominated sorting genetic algorithm-II and optimal solution criterion. Artif Intell Rev 56, 8511–8546 (2023). https://doi.org/10.1007/s10462-022-10388-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10388-x

Keywords

Navigation