Skip to main content

Advertisement

Log in

SIRT1 slows the progression of lupus nephritis by regulating the NLRP3 inflammasome through ROS/TRPM2/Ca2+ channel

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a chronic multisystem inflammatory disease associated with autoantibody formation. Lupus nephritis (LN) is one of the most severe organ manifestations of SLE. The inflammatory response is a key factor in kidney injury, and the NLRP3 inflammasome is frequently associated with the pathogenesis of LN. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD +)-dependent histone deacetylase, is a promising therapeutic target for preventing renal injury. However, the mechanism of SIRT1 in LN remains unclear. Here, we aimed to investigate the mechanism by which SIRT inhibits the NLRP3 inflammasome to slow the progression of LN. We detected the expression of SIRT1 and the infiltration of macrophages in MRL/lpr mice; the results showed that the expression of SIRT1 was decreased, and the symptoms of lupus nephritis were relieved after the use of resveratrol, which upregulated SIRT1. In vitro studies showed that after lipopolysaccharide (LPS) stimulation, SIRT1 expression decreased, and the NLRP3 inflammasome was activated. Upregulation of SIRT1 inhibits NLRP3 inflammasome activation and assembly by interfering with two signalling pathways. First, SIRT1 affects NF-κB expression, transcription, and inflammatory cytokine expression. Second, SIRT1 modulates calcium influx induced by transient receptor potential channel M2 (TRPM2), which could be partly due to the inhibition of reactive oxygen species (ROS) production. Our findings suggest that upregulated SIRT1 inhibits the NLRP3 inflammasome to slow the progression of lupus nephritis by regulating NF-κB and ROS/TRPM2/Ca2+ channels. This study reveals a new anti-inflammatory mechanism of SIRT1, suggesting that SIRT1 may be a potential therapeutic target for the prevention of LN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Narváez J. Systemic lupus erythematosus 2020. Med Clin (Barc). 2020;155(11):494–501.

    Article  PubMed  Google Scholar 

  2. Mahajan A, Amelio J, Gairy K, et al. Systemic lupus erythematosus, lupus nephritis and end-stage renal disease: a pragmatic review mapping disease severity and progression. Lupus. 2020;29(9):1011–20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anders HJ, Saxena R, Zhao MH, Parodis I, Salmon JE, Mohan C. Lupus nephritis. Nat Rev Dis Primers. 2020;6(1):7.

    Article  PubMed  Google Scholar 

  4. Parikh SV, Almaani S, Brodsky S, Rovin BH. Update on lupus nephritis: core curriculum 2020. Am J Kidney Dis. 2020;76(2):265–81.

    Article  PubMed  Google Scholar 

  5. Sugiyama M, Kinoshita K, Funauchi M. The pathogenic role of macrophage in lupus nephritis. Nihon Rinsho Meneki Gakkai Kaishi. 2015;38(3):135–41.

    Article  PubMed  Google Scholar 

  6. Richoz N, Tuong ZK, Loudon KW, et al. Distinct pathogenic roles for resident and monocyte-derived macrophages in lupus nephritis. JCI Insight. 2022;7(21):e159751.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016;165(4):792–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev. 2015;265(1):6–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol. 2019;25(10):2538.

    Article  Google Scholar 

  10. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oliveira CB, Lima CAD, Vajgel G. Sandrin-Garcia P The Role of NLRP3 Inflammasome in lupus nephritis. Int J Mol Sci. 2021;22(22):12476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi R, Fu Y, Zhao D, Boczek T, Wang W, Guo F. Cell death modulation by transient receptor potential melastatin channels TRPM2 and TRPM7 and their underlying molecular mechanisms [J]. Biochem Pharmacol. 2021;190:114664.

    Article  CAS  PubMed  Google Scholar 

  13. Sumoza-Toledo A, Penner R. TRPM2: a multifunctional ion channel for calcium signalling [J]. J Physiol. 2011;589(Pt 7):1515–25.

    Article  CAS  PubMed  Google Scholar 

  14. Rossol M, Pierer M, Raulien N, et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors [J]. Nat Commun. 2012;3:1329.

    Article  PubMed  Google Scholar 

  15. Ding R, Yin YL, Jiang LH. Reactive oxygen species-induced TRPM2-mediated Ca2+ signalling in endothelial cells [J]. Antioxidants (Basel). 2021;10(5):718.

    Article  CAS  PubMed  Google Scholar 

  16. Shen P, Deng X, Chen Z, et al. SIRT1: a potential therapeutic target in autoimmune diseases[J]. Front Immunol. 2021;12:779177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng T, Ding S, Liu S, Li Y, Sun L. Human umbilical cord-derived mesenchymal stem cell therapy ameliorate lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis[J]. Theranostics. 2021;11(2):893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang SR, Hsu WH, Wu CY, et al. Accelerated, severe lupus nephritis benefits from treatment with honokiol by immunoregulation and differentially regulating NF-kappaB/NLRP3 inflammasome and sirtuin 1/autophagy axis[J]. FASEB J. 2020;34(10):13284–99.

    Article  CAS  PubMed  Google Scholar 

  19. Xu Y, Nie L, Yin YG, et al. Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells [J]. Toxicol Appl Pharmacol. 2012;259:395–401.

    Article  CAS  PubMed  Google Scholar 

  20. Yang G, Chang CC, Yang Y, et al. Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis. J Agric Food Chem. 2018;66(49):12953–60.

    Article  CAS  PubMed  Google Scholar 

  21. Huang Y, Zhang J, Tao Y, et al. AHR/ROS-mediated mitochondria apoptosis contributes to benzo[a]pyrene-induced heart defects and the protective effects of resveratrol. Toxicology. 2021;462:152965.

    Article  CAS  PubMed  Google Scholar 

  22. Qi J, Fu LY, Liu KL, et al. Resveratrol in the hypothalamic paraventricular nucleus attenuates hypertension by regulation of ROS and neurotransmitters. Nutrients. 2022;14(19):4177.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chaturvedi S, Tiwari V, Gangadhar NM, et al. Isoformononetin, a dietary isoflavone protects against streptozotocin induced rat model of neuroinflammation through inhibition of NLRP3/ASC/IL-1 axis activation. Life Sci. 2021;286:119989.

    Article  CAS  PubMed  Google Scholar 

  24. Pang Y, Wu D, Ma Y, et al. Reactive oxygen species trigger NF-kappaB-mediated NLRP3 inflammasome activation involvement in low-dose CdTe QDs exposure-induced hepatotoxicity. Redox Biol. 2021;47:102157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pardo PS, Boriek AM. SIRT1 Regulation in Ageing and Obesity. Mech Ageing Dev. 2020;188: 111249.

    Article  CAS  PubMed  Google Scholar 

  26. Qiu Y, Zhou X, Liu Y, Tan S, Li Y. The role of sirtuin-1 in immune response and systemic lupus erythematosus. Front Immunol. 2021;12:632383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Luo S, Zhan Y, et al. Increased expression of PPAR-gamma modulates monocytes Into a M2-Like phenotype in SLE Patients: an implicative protective mechanism and potential therapeutic strategy of systemic lupus erythematosus. Front Immunol. 2020;11:579372.

    Article  CAS  PubMed  Google Scholar 

  28. Wang ZL, Luo XF, Li MT, et al. Resveratrol possesses protective effects in a pristane-induced lupus mouse model. PLoS ONE. 2014;9(12):e114792.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pannu N, Bhatnagar A. Prophylactic effect of resveratrol and piperine on pristane-induced murine model of lupus-like disease. Inflammopharmacology. 2020;28(3):719–35.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y, Wang S, Wan T, et al. Cyanidin-3-O-β-glucoside inactivates NLRP3 inflammasome and alleviates alcoholic steatohepatitis via SirT1/NF-κB signaling pathway. Free Radic Biol Med. 2020;160:334–41.

    Article  CAS  PubMed  Google Scholar 

  31. Wang R, Dong Z, Lan X, Liao Z, Chen M. Sweroside alleviated LPS-induced inflammation via SIRT1 mediating NF-kappaB and FOXO1 signaling pathways in RAW264.7 cells. Molecules. 2019;24(5):872.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alharbi KS, Afzal O, Kazmi I, et al. Nuclear factor-kappa B (NF-kappaB) inhibition as a therapeutic target for plant nutraceuticals in mitigating inflammatory lung diseases. Chem Biol Interact. 2022;354:109842.

    Article  CAS  PubMed  Google Scholar 

  33. Poma P. NF-kappaB and disease. Int J Mol Sci. 2020;21(23):9181.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 2015;22(13):1111–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sho T, Xu J. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Biochem. 2019;66(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  36. Ding T, Wang S, Zhang X, et al. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine. 2018;1(41):45–53.

    Article  Google Scholar 

  37. An Y, Zhang H, Wang C, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 2019;33(11):12515–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang L, Negro R, Wu H. TRPM2, linking oxidative stress and Ca2+ permeation to NLRP3 inflammasome activation. Curr Opin Immunol. 2020;62:131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhong Z, Zhai Y, Liang S, et al. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat Commun. 2013;4:1611.

    Article  PubMed  Google Scholar 

  40. Zheng Q, Tan Q, Ren Y, et al. Hyperosmotic stress-induced TRPM2 channel activation stimulates NLRP3 inflammasome activity in primary human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2018;59(8):3259–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported the Natural Science Foundation of Shanxi Province (No.201901D111188, 202203021221188), the Doctoral Startup Research Fund of Shanxi Medical University (No.03201403), and the Research Project Supported by Shanxi Scholarship Council of China (No.2021–079).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the experimental design, data analysis, and manuscript review. TH, JC, JW, SC, HX, XZ, JY, YX, and TZ participated in the experimental operation and data analysis. JT and TH wrote the article. WF, YH revised the manuscript and provided suggestions.

Corresponding authors

Correspondence to Jihua Tian, Weiping Fan or Yanhong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Huang, T., Chen, J. et al. SIRT1 slows the progression of lupus nephritis by regulating the NLRP3 inflammasome through ROS/TRPM2/Ca2+ channel. Clin Exp Med 23, 3465–3478 (2023). https://doi.org/10.1007/s10238-023-01093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01093-2

Keywords

Navigation