Skip to main content

Advertisement

Log in

Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method

  • Original Article
  • Published:
Chinese Journal of Mechanical Engineering Submit manuscript

Abstract

Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang M Z. Design of a planar parallel robot for optimal workspace and dexterity. International Journal of Advanced Robotic Systems, 2011, 8(4): 176–183, DOI:10.5772/45693.

  2. Merlet J P, Gosselin C M, Mouly N. Workspaces of planar parallel manipulators. Mechanism and Machine Theory, 1998, 33(1–2): 7–20, DOI:10.1016/S0094-114X(97)00025-6.

  3. Agheli M, Nestinger S S. Comprehensive closed-form solution for the reachable workspace of 2-RPR planar parallel mechanisms. Mechanism and Machine Theory, 2014, 74: 102–116, DOI:10.1016/j.mechmachtheory.2013.11.016.

  4. Hay A M, Snyman J A. Multidisciplinary Design Optimization Group. The determination of nonconvex workspaces of generally constrained planar Stewart platforms. Computers & Mathematics with Applications, 2000, 40(8): 1043–1060, DOI:10.1016/S0898-1221(00)85015-4.

  5. Liu X J, Wang J, Pritschow G. On the optimal kinematic design of the PRRRP 2-DoF parallel mechanism. Mechanism and Machine Theory, 2006, 41(9): 1111–1130, DOI:10.1016/j.mechmachtheory.2005.10.008.

  6. Qi H, Liwen G, Jianxin W. Dynamic performance evaluation of a 2-DoF planar parallel mechanism. International Journal of Advanced Robotic Systems, 2012, 9(6): 250, DOI:10.5772/54731.

  7. Wu J, Wang L, You Z. A new method for optimum design of parallel manipulator based on kinematics and dynamics. Nonlinear Dynamics, 2010, 61(4): 717–727, DOI:10.1007/s11071-010-9682-x.

  8. Wang J, Li Y, Zhao X. Inverse kinematics and control of a 7-dof redundant manipulator based on the closed-loop algorithm. International Journal of Advanced Robotic Systems, 2010, 7(4): 1–9, DOI:10.5772/10495.

  9. Ding M Z, Ong C J, Poo A N. Resolution of redundant manipulators via distance optimization. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2000, 214: 1037–1047, DOI:10.1243/0954406001523506.

  10. Varalakshmi K V, Srinivas J. Optimized configurations of kinematically redundant planar parallel manipulator following a desired trajectory. Procedia Technology, 2014, 14: 133–140, DOI:10.1016/j.protcy.2014.08.018.

  11. Amar A R, Perdereau V, Drouin M. Penalty approach for a constrained optimization to solve on-line the inverse kinematic problem of redundant manipulators. Robotics and Automation, 1996. Proceedings., IEEE International Conference on. April, Minneapolis, USA, 1996, 1: 133–138.

  12. Assal S F M, Watanabe K, Izumi K. Neural network-based kinematic inversion of industrial redundant robots using cooperative fuzzy hint for the joint limits avoidance. Mechatronics, IEEE/ASME Transactions, 2006, 11(5): 593–603, DOI:10.1109/TMECH.2006.882991.

  13. Wang J, Li Y. Comparative analysis for the inverse kinematics of redundant manipulators based on repetitive tracking tasks. Automation and Logistics, 2009; ICAL’09. IEEE International Conference on. 2009: 164–169.

  14. Lalo W, Brandt T, Schramm D, et al. A linear optimization approach to inverse kinematics of redundant robots with respect to manipulability. In The 25th International Symposium on Automation and Robotics in Construction. ISARC, Vilnius, Lithuania, 2008: 175–180.

  15. Zhang Y, Wang J. A dual neural network for constrained joint torque optimization of kinematically redundant manipulators. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions, 2002, 32(5): 654–662, DOI:10.1109/TSMCB.2002.1033184.

  16. Wu F X, Zhang W J, Li Q, et al. Control of hybrid machines with 2-DoF for trajectory tracking problems. Control Systems Technology, IEEE Transactions, 2005, 13(2): 338–342, DOI:10.1109/TCST.2004.839580.

  17. Kordjazi H, Akbarzadeh A. Inverse dynamics of a 3-prismatic-revolute-revolute planar parallel manipulator using natural orthogonal complement. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(2): 258–269, DOI:10.1243/09596518JSCE1098.

  18. Wu J, Wang J, Li T, et al. Dynamic dexterity of a planar 2-DoF parallel manipulator in a hybrid machine tool. Robotica, 2008, 26(1): 93–98, DOI:10.1017/S0263574707003621.

  19. Wu J, Wang J, Wang L, et al. Dynamics and control of a planar 3-DoF parallel manipulator with actuation redundancy. Mechanism and Machine Theory, 2009, 44(4): 835–849, DOI: 10.1016/j.mechmachtheory.2008.04.002.

  20. Wu J, Wang J, Wang L, et al. Dynamic model and force control of the redundantly actuated parallel manipulator of a 5-DoF hybrid machine tool. Robotica, 2009, 27(1): 59–65, DOI:10.1017/S0263574708004529.

  21. Nasa C, Bandyopadhyay S. Trajectory-tracking control of a planar 3-RRR parallel manipulator with singularity avoidance. Proceedings of 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico, 2011.

  22. Tatlicioglu E, McIntyre M L, Dawson D M, et al. Adaptive non-linear tracking control of kinematically redundant robot manipulators. International Journal of Robotics and Automation, 2008, 23(2): 98–105, DOI:10.2316/Journal.206.2008.2.206-3081.

  23. Ata A A, Myo R T. Optimal point-to-point trajectory tracking of redundant manipulators using generalized pattern search. International Journal of Advanced Robotic Systems, 2005, 2(3): 239–244, DOI:10.5772/5781.

  24. Zi B, Cao J B, Zhu Z C. Dynamic simulation of hybrid-driven planar five-bar parallel mechanism based on simmechanics and tracking control. International Journal of Advanced Robotic Systems, 2011, 8(4): 28–33, DOI:10.5772/45683.

  25. Jaen-Cuellar A Y, Romero-Troncoso R J, Morales-Velazquez L, et al. PID-controller tuning optimization with genetic algorithms in servo systems. International Journal of Advanced Robotic Systems, 2013, 10: 1–14, DOI:10.5772/56697.

  26. Patrascu M, Hanchevici A B, Dumitrache I. Tuning of PID controllers for non-linear MIMO systems using genetic algorithms. Proceedings of the 18th IFAC Congress, Milano, Italy, 2011: 12644–12649.

  27. Jahed A, Piltan F, Rezaie H, et al. Design computed torque controller with parallel fuzzy inference system compensator to control of robot manipulator. International Journal of Information Engineering & Electronic Business, 2013, 5(3): 66–77, DOI:10.5815/ijieeb.2013.03.08.

  28. Oh Y, Chung W, Youm Y. Extended impedance control of redundant manipulators based on weighted decomposition of joint space. Journal of Robotic Systems, 1998, 15(5): 231–258, DOI:10.1002/(SICI)1097-4563(199805)15:5<231::AID-ROB1>3.0.CO;2-P.

  29. Wang J, Li Y. Traching control of a redundant manipulator with the assistance of tactile sensing. Intelligent Automation & Soft Computing, 2011, 17(7): 833–845, DOI:10.1080/107985872011.10643192.

  30. Bayram A, Özgören M K. The conceptual design of a spatial binary hyper redundant manipulator and its forward kinematics. Proc IMechE, Part C: J. Mechanical Engineering Science, 2012, 226(1): 217–227, DOI: 10.1080/10798587.2011.10643192..

  31. Mitchell M. An introduction to genetic algorithms. 5th ed. Cambridge, MA: The MIT Press, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla BAYRAM.

Appendices

Appendix 1. Rate of the Passive Joint Variables

\(s_{1}\), \(s_{2}\) and \(s_{3}\): the independent joint variables

\(\alpha\), \(\beta\), \(\gamma\) and \(\theta\): the passive (dependent) joint variables

The rate of the passive joint variables is given in terms of the independent joint variables as follows.

$$\dot{\alpha } = a_{\alpha } \,\dot{s}_{1} + b_{\alpha } \,\dot{s}_{2} + c_{\alpha } \,\dot{s}_{3} ,$$
$$\dot{\beta } = a_{\beta } \,\dot{s}_{1} + b_{\beta } \,\dot{s}_{2} + c_{\beta } \,\dot{s}_{3}$$
$$\dot{\gamma } = a_{\gamma } \,\dot{s}_{1} + b_{\gamma } \,\dot{s}_{2} + c_{\gamma } \,\dot{s}_{3} ,$$
$$\dot{\theta } = a_{\theta } \,\dot{s}_{1} + b_{\theta } \,\dot{s}_{2} + c_{\theta } \,\dot{s}_{3}$$

The coefficients are defined as

  • $$a_{\alpha } = \frac{{\cot \left( {\alpha - \theta } \right)}}{{s_{1} }}$$
    $$b_{\alpha } = - \frac{{\csc \left( {\beta - \gamma } \right)\,\,\csc \left( {\alpha - \theta } \right)\;\sin \left( {\beta - \theta } \right)}}{{s_{1} }}$$
    $$c_{\alpha } = \frac{{\csc \left( {\beta - \gamma } \right)\,\,\csc \left( {\alpha - \theta } \right)\;\sin \left( {\gamma - \theta } \right)}}{{s_{1} }}$$
  • $$a_{\beta } = 0,\;b_{\beta } = - \frac{{\csc \left( {\beta - \gamma } \right)\,\,}}{{s_{3} }},\;c_{\beta } = \frac{{\cot \left( {\beta - \gamma } \right)\,\,}}{{s_{3} }}$$
  • $$a_{\gamma } = 0,\;b_{\beta } = - \frac{{\cot \left( {\beta - \gamma } \right)\,\,}}{{s_{2} }},\;c_{\gamma } = \frac{{\csc \left( {\beta - \gamma } \right)\,\,}}{{s_{2} }}$$
  • $$a_{\theta } = \frac{{\csc \left( {\alpha - \theta } \right)}}{2d},\;b_{\theta } = - \frac{{\csc \left( {\beta - \gamma } \right)\,\,\csc \left( {\alpha - \theta } \right)\;\sin \left( {\alpha - \beta } \right)}}{2d},\;c_{\theta } = \frac{{\csc \left( {\beta - \gamma } \right)\,\,\csc \left( {\alpha - \theta } \right)\;\sin \left( {\alpha - \gamma } \right)}}{2d}$$

Appendix 2. Features of the Manipulator

The masses: \(m_{2} = m_{4} = 0.3\;{\text{kg}}\), \(m_{3} = m_{5} = 0.135\;{\text{kg}}\)\(m_{6} = 0.456\;{\text{kg}}\), \(m_{7} = 0.181\;{\text{kg}}\), \(m_{8} = 1.772\;{\text{kg}}\)

The inertias: \(I_{2} = I_{4} = 0.82 \times 10^{ - 3} \;{\text{kg}} . {\text{m}}^{2}\), \(I_{3} = I_{5} = 0.33 \times 10^{ - 3} \;{\text{kg}} . {\text{m}}^{2}\),\(I_{6} = 3.2 \times 10^{ - 3} \;{\text{kg}} . {\text{m}}^{2}\), \(I_{7} = 0.63 \times 10^{ - 3} \;{\text{kg}} . {\text{m}}^{2}\), \(I_{8} = 18.42 \times 10^{ - 3} \;{\text{kg}} . {\text{m}}^{2}\).

The mass center of gravity: \(\rho_{c2} = \rho_{c4} = 0.0812\;{\text{m}}\), \(\rho_{c3} = \rho_{c5} = 0.0741\;{\text{m}}\), \(\rho_{c6} = 0.1418\;{\text{m}}\), \(\rho_{c7} = 0.0946\;{\text{m}}\), \(\rho_{c8} = 0.142\,{\text{m}}\).

The viscous friction coefficient: \(c = 50\;\;Ns/m\)

The norm of disturbance force: \(\eta = \left[ {\begin{array}{*{20}c} 2 \\ 2 \\ \end{array} } \right]\quad \left( N \right)\)

The parameters of the Genetic algorithm:

The crossover type: uniform crossover

The probability of crossover: 0.4

The mutation probability (per bit): 0.05

The selection type: The Stochastic Universal Sampling method

The size of the population: 30

The maximum number of generations: 30

The crossover type: uniform crossover

The probability of crossover: 0.4

The mutation probability (per bit): 0.05

The selection type: The Stochastic Universal Sampling method

The size of the population: 30

The maximum number of generations: 30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BAYRAM, A. Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method. Chin. J. Mech. Eng. 30, 449–458 (2017). https://doi.org/10.1007/s10033-017-0091-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10033-017-0091-7

Keywords

Navigation