Skip to main content

Advertisement

Log in

Overview of m6A and circRNAs in human cancers

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

N6-methyladenosine (m6A), the richest post-transcriptional modification of RNA in eukaryotic cells, is dynamically installed/uninstalled by the RNA methylase complex (“writer”) and demethylase (“eraser”) and recognized by the m6A-binding protein (“reader”). M6A modification on RNA metabolism involves maturation, nuclear export, translation and splicing, thereby playing a critical role in cellular pathophysiology and disease processes. Circular RNAs (circRNAs) are a class of non-coding RNAs with a covalently closed loop structure. Due to its conserved and stable properties, circRNAs could participate in physiological and pathological processes through unique pathways. Despite the recent discovery of m6A and circRNAs remains in the initial stage, research has shown that m6A modifications are widespread in circRNAs and regulates circRNA metabolism, including biogenesis, cell localization, translation, and degradation. In this review, we describe the functional crosstalk between m6A and circRNAs, and illustrate their roles in cancer development. Moreover, we discuss the potential mechanisms and future research directions of m6A modification and circRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdelmohsen K et al (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14(3):361–369

    PubMed  PubMed Central  Google Scholar 

  • Alarcon CR et al (2015a) HNRNPA2B1 Is a mediator of m(6)A-Dependent nuclear RNA processing events. Cell 162(6):1299–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alarcon CR et al (2015b) N6-methyladenosine marks primary microRNAs for processing. Nature 519(7544):482–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arguello AE, DeLiberto AN, Kleiner RE (2017) RNA chemical proteomics reveals the N(6)-Methyladenosine (m(6)A)-Regulated Protein-RNA Interactome. J Am Chem Soc 139(48):17249–17252

    CAS  PubMed  Google Scholar 

  • Aufiero S et al (2019) Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol 16(8):503–514

    PubMed  Google Scholar 

  • Barbagallo D et al (2019) CircSMARCA5 regulates VEGFA mRNA splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1. Cancers (basel) 11(2):194

    CAS  PubMed  Google Scholar 

  • Barbieri I et al (2017) Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature 552(7683):126–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bokar JA et al (1994) Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei internal mRNA methylation requires a multisubunit complex. J Biol Chem 269(26):17697–17704

    CAS  PubMed  Google Scholar 

  • Cai X et al (2018) HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett 415:11–19

    CAS  PubMed  Google Scholar 

  • Cai J et al (2022) CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m(6)A modification in hepatocellular carcinoma. Mol Ther Oncolytics 24:755–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capel B et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030

    CAS  PubMed  Google Scholar 

  • Chao CW et al (1998) The mouse formin (Fmn) gene: abundant circular RNA transcripts and gene-targeted deletion analysis. Mol Med 4(9):614–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21(8):475–490

    CAS  PubMed  Google Scholar 

  • Chen XY, Zhang J, Zhu JS (2019a) The role of m(6)A RNA methylation in human cancer. Mol Cancer 18(1):103

    PubMed  PubMed Central  Google Scholar 

  • Chen X et al (2019b) Circular RNAs in immune responses and immune diseases. Theranostics 9(2):588–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RX et al (2019c) N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun 10(1):4695

    PubMed  PubMed Central  Google Scholar 

  • Chen C et al (2021) N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics 11(9):4298–4315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2022) Activation of YAP1 by N6-methyladenosine-modified circCPSF6 drives malignancy in hepatocellular carcinoma. Cancer Res 82(4):599–614

    CAS  PubMed  Google Scholar 

  • Chi F, Cao Y, Chen Y (2021) Analysis and validation of circRNA-miRNA network in regulating m(6)A RNA methylation modulators reveals CircMAP2K4/miR-139-5p/YTHDF1 axis involving the proliferation of hepatocellular carcinoma. Front Oncol 11:560506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chibwesha CJ, Stringer JSA (2019) Cervical cancer as a global concern: contributions of the dual epidemics of HPV and HIV. JAMA 322(16):1558–1560

    PubMed  Google Scholar 

  • Cocquerelle C et al (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160

    CAS  PubMed  Google Scholar 

  • Conn SJ et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134

    CAS  PubMed  Google Scholar 

  • Danan M et al (2012) Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res 40(7):3131–3142

    CAS  PubMed  Google Scholar 

  • Deng X et al (2018) RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res 28(5):507–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A 71(10):3971–3975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Timoteo G et al (2020) Modulation of circRNA metabolism by m(6)A modification. Cell Rep 31(6):107641

    PubMed  Google Scholar 

  • Diaz-Diaz A et al (2020) Heat shock protein 90 chaperone regulates the E3 ubiquitin-ligase hakai protein stability. Cancers (basel) 12(1):215

    CAS  PubMed  Google Scholar 

  • Du WW et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    PubMed  PubMed Central  Google Scholar 

  • Du A et al (2022) M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol Cancer 21(1):109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du, H. et al., YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nature Communications, 2016. 7.

  • Duan HC et al (2017) ALKBH10B Is an RNA N(6)-Methyladenosine demethylase affecting arabidopsis floral transition. Plant Cell 29(12):2995–3011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan JL et al (2022) A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer 21(1):93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubin RA, Kazmi MA, Ostrer H (1995) Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene 167(1–2):245–248

    CAS  PubMed  Google Scholar 

  • Dudekulay DB et al (2016) CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13(1):34–42

    Google Scholar 

  • Fan HN et al (2022) METTL14-mediated m(6)A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer 21(1):51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer JW et al (2020) Structure-mediated RNA decay by UPF1 and G3BP1. Mol Cell 78(1):70–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goh YT et al (2020) METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res 48(16):9250–9261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodall GJ, Wickramasinghe VO (2021) RNA in cancer. Nat Rev Cancer 21(1):22–36

    CAS  PubMed  Google Scholar 

  • Grossman JG et al (2018) Recruitment of CCR2(+) tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. Oncoimmunology 7(9):e1470729

    PubMed  PubMed Central  Google Scholar 

  • Guarnerio J et al (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165(2):289–302

    CAS  PubMed  Google Scholar 

  • Guo Y et al (2021) Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis. Mol Cancer 20(1):93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y et al (2014) Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response. Science 343(6176):1244–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han D et al (2019) Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature 566(7743):270–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TB et al (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–4422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TB et al (2013a) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    CAS  PubMed  Google Scholar 

  • Hansen TB, Kjems J, Damgaard CK (2013b) Circular RNA and miR-7 in cancer. Cancer Res 73(18):5609–5612

    CAS  PubMed  Google Scholar 

  • Holdt LM et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horiuchi K et al (2013) Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem 288(46):33292–33302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu MT, Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280(5720):339–340

    CAS  PubMed  Google Scholar 

  • Hsu PJ et al (2017) Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27(9):1115–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PJ et al (2019) The RNA-binding protein FMRP facilitates the nuclear export of N (6)-methyladenosine-containing mRNAs. J Biol Chem 294(52):19889–19895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y et al (2020) Oocyte competence is maintained by m(6)A methyltransferase KIAA1429-mediated RNA metabolism during mouse follicular development. Cell Death Differ 27(8):2468–2483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y et al (2015) Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 43(1):373–384

    CAS  PubMed  Google Scholar 

  • Huang H et al (2018a) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20(3):285–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C et al (2018b) A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev 32(9–10):639–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R et al (2020) N(6)-Methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors. Biol Psychiatry 88(5):392–404

    CAS  PubMed  Google Scholar 

  • Ianniello Z, Paiardini A, Fatica A (2019) N(6)-Methyladenosine (m(6)A): A promising new molecular target in acute myeloid leukemia. Front Oncol 9:251

    PubMed  PubMed Central  Google Scholar 

  • Ivanov A et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177

    CAS  PubMed  Google Scholar 

  • Jacobs E, Mills JD, Janitz M (2012) The role of RNA structure in posttranscriptional regulation of gene expression. J Genet Genomics 39(10):535–543

    CAS  PubMed  Google Scholar 

  • Jeck WR et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia R et al (2019) Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discov 5:45

    PubMed  PubMed Central  Google Scholar 

  • Jiang X et al (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6(1):74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley DR et al (2014) Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol 15(12):537

    PubMed  PubMed Central  Google Scholar 

  • Knuckles P, Buhler M (2018) Adenosine methylation as a molecular imprint defining the fate of RNA. FEBS Lett 592(17):2845–2859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knuckles P et al (2018) Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d. Genes Dev 32(5–6):415–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komar AA, Hatzoglou M (2011) Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 10(2):229–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen LS et al (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691

    CAS  PubMed  Google Scholar 

  • Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–1842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lasda E, Parker R (2016) Circular RNAs Co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS ONE 11(2):e0148407

    PubMed  PubMed Central  Google Scholar 

  • Lee M, Kim B, Kim VN (2014) Emerging roles of RNA modification: m(6)A and U-tail. Cell 158(5):980–987

    CAS  PubMed  Google Scholar 

  • Lei M et al (2020) Translation and functional roles of circular RNAs in human cancer. Mol Cancer 19(1):30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesbirel S et al (2018) The m(6)A-methylase complex recruits TREX and regulates mRNA export. Sci Rep 8(1):13827

    PubMed  PubMed Central  Google Scholar 

  • Li F et al (2014) Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals an aromatic cage for m(6)A recognition. Cell Res 24(12):1490–1492

    PubMed  PubMed Central  Google Scholar 

  • Li Z et al (2015a) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    PubMed  Google Scholar 

  • Li Y et al (2015b) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2018) Downregulation of N(6)-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N(6)-methyladenosine levels. Oncotarget 9(3):3752–3764

    PubMed  Google Scholar 

  • Li X, Tian G, Wu J (2021a) Novel circGFRalpha1 promotes Self-renewal of female germline stem cells mediated by m(6)A writer mettl14. Front Cell Dev Biol 9:640402

    PubMed  PubMed Central  Google Scholar 

  • Li B et al (2021b) circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun 12(1):295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247

    PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10(2):93–95

    CAS  PubMed  Google Scholar 

  • Liu N et al (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518(7540):560–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N et al (2017) N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 45(10):6051–6063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZX et al (2018) Link between m6A modification and cancers. Front Bioeng Biotechnol 6:89

    PubMed  PubMed Central  Google Scholar 

  • Liu R et al (2019) SEMA3C promotes cervical cancer growth and is associated with poor prognosis. Front Oncol 9:1035

    PubMed  PubMed Central  Google Scholar 

  • Liu CX et al (2019) Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177(4):865–880

    CAS  PubMed  Google Scholar 

  • Liu J et al (2020a) N (6)-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367(6477):580–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N et al (2020b) Role of non-coding RNA in the pathogenesis of depression. Gene 735:144276

    CAS  PubMed  Google Scholar 

  • Liu Z et al (2021a) N(6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer 20(1):105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B et al (2021b) Circular RNA circZbtb20 maintains ILC3 homeostasis and function via Alkbh5-dependent m(6)A demethylation of Nr4a1 mRNA. Cell Mol Immunol 18(6):1412–1424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luxton HJ et al (2019) The oncogene Metadherin interacts with the known splicing proteins YTHDC1, sam68 and T-STAR and plays a novel role in alternative mRNA splicing. Cancers (basel) 11(9):1233

    CAS  PubMed  Google Scholar 

  • Ma JZ et al (2017) METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology 65(2):529–543

    CAS  PubMed  Google Scholar 

  • Mackie GA (1998) Ribonuclease E is a 5’-end-dependent endonuclease. Nature 395(6703):720–723

    CAS  PubMed  Google Scholar 

  • Mauer J et al (2017) Reversible methylation of m(6)Am in the 5’ cap controls mRNA stability. Nature 541(7637):371–375

    CAS  PubMed  Google Scholar 

  • Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    CAS  PubMed  Google Scholar 

  • Mendel M et al (2018) Methylation of structured rna by the m(6)a writer mettl16 is essential for mouse embryonic development. Mol Cell 71(6):986–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng S et al (2017) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16(1):94

    PubMed  PubMed Central  Google Scholar 

  • Meyer KD, Jaffrey SR (2017) Rethinking m(6)A readers, writers, and erasers. Annu Rev Cell Dev Biol 33:319–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KD et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149(7):1635–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KD et al (2015) 5’ UTR m(6)A promotes cap-independent translation. Cell 163(4):999–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolet BP et al (2018) Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res 46(16):8168–8180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nigro JM et al (1991) Scrambled exons. Cell 64(3):607–613

    CAS  PubMed  Google Scholar 

  • Noto JJ, Schmidt CA, Matera AG (2017) Engineering and expressing circular RNAs via tRNA splicing. RNA Biol 14(8):978–984

    PubMed  PubMed Central  Google Scholar 

  • Park OH et al (2019) Endoribonucleolytic Cleavage of m(6)A-containing RNAs by RNase P/MRP complex. Mol Cell 74(3):494–507

    CAS  PubMed  Google Scholar 

  • Patil DP et al (2016) m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537(7620):369–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pendleton KE et al (2017) The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase intron retention. Cell 169(5):824–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ping XL et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24(2):177–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Preusser C et al (2018) Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles 7(1):1424473

    PubMed  PubMed Central  Google Scholar 

  • Rao X et al (2021) N(6) -methyladenosine modification of circular RNA circ-ARL3 facilitates Hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305. IUBMB Life 73(2):408–417

    CAS  PubMed  Google Scholar 

  • Rong B et al (2020) Ribosome 18S m(6)A methyltransferase METTL5 promotes translation initiation and breast cancer cell growth. Cell Rep 33(12):108544

    CAS  PubMed  Google Scholar 

  • Rong D et al (2021) m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression. Mol Ther Nucleic Acids 26:637–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roost C et al (2015) Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J Am Chem Soc 137(5):2107–2115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi F et al (2019) Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene 38(20):3843–3854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roundtree, I.A. et al., YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife, 2017. 6.

  • Salzman J et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y et al (2017) Nuclear retention of the lncRNA SNHG1 by doxorubicin attenuates hnRNPC-p53 protein interactions. EMBO Rep 18(4):536–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y et al (2021) G protein-coupled oestrogen receptor promotes cell growth of non-small cell lung cancer cells via YAP1/QKI/circNOTCH1/m6A methylated NOTCH1 signalling. J Cell Mol Med 25(1):284–296

    CAS  PubMed  Google Scholar 

  • Shi H et al (2017) YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res 27(3):315–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shulman Z, Stern-Ginossar N (2020) The RNA modification N(6)-methyladenosine as a novel regulator of the immune system. Nat Immunol 21(5):501–512

    CAS  PubMed  Google Scholar 

  • Sun HD et al (2018) Down-regulation of circPVRL3 promotes the proliferation and migration of gastric cancer cells. Sci Rep 8(1):10111

    PubMed  PubMed Central  Google Scholar 

  • Sun T, Wu R, Ming L (2019) The role of m6A RNA methylation in cancer. Biomed Pharmacother 112:108613

    CAS  PubMed  Google Scholar 

  • Taketo K et al (2018) The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol 52(2):621–629

    PubMed  Google Scholar 

  • Tang C et al (2018) ALKBH5-dependent m6A demethylation controls splicing and stability of long 3’-UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A 115(2):E325–E333

    CAS  PubMed  Google Scholar 

  • Tang C et al (2020) m(6)A-dependent biogenesis of circular RNAs in male germ cells. Cell Res 30(3):211–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283

    CAS  PubMed  Google Scholar 

  • van Tran N et al (2019) The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res 47(15):7719–7733

    PubMed  PubMed Central  Google Scholar 

  • Visvanathan A et al (2018) Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 37(4):522–533

    CAS  PubMed  Google Scholar 

  • Vo JN et al (2019) The landscape of circular RNA in cancer. Cell 176(4):869–888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vu LP et al (2017) The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 23(11):1369–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481):117–120

    PubMed  Google Scholar 

  • Wang X et al (2015) N(6)-methyladenosine modulates messenger rna translation Efficiency. Cell 161(6):1388–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Doxtader KA, Nam Y (2016a) Structural basis for cooperative function of mettl3 and mettl14 methyltransferases. Mol Cell 63(2):306–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2016b) Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 534(7608):575–578

    CAS  PubMed  Google Scholar 

  • Wang K et al (2017) Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett 394:1–12

    CAS  PubMed  Google Scholar 

  • Wang T et al (2020) The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer 19(1):88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2021) Emerging roles of circular RNAs in systemic lupus erythematosus. Mol Ther Nucleic Acids 24:212–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warda AS et al (2017) Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep 18(11):2004–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J et al (2018) Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell 71(6):973–985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W et al (2021) Circ0008399 interaction with WTAP promotes assembly and activity of the m(6)A methyltransferase complex and promotes cisplatin resistance in bladder cancer. Cancer Res 81(24):6142–6156

    CAS  PubMed  Google Scholar 

  • Wen J et al (2018) Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell 69(6):1028–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiener D, Schwartz S (2021) The epitranscriptome beyond m(6)A. Nat Rev Genet 22(2):119–131

    CAS  PubMed  Google Scholar 

  • Wimalasena VK et al (2020) Using chemical epigenetics to target cancer. Mol Cell 78(6):1086–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B et al (2018) Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun 9(1):420

    PubMed  PubMed Central  Google Scholar 

  • Wu R et al (2019a) A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res 29(1):23–41

    PubMed  Google Scholar 

  • Wu Y et al (2019b) m(6)A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer 18(1):87

    PubMed  PubMed Central  Google Scholar 

  • Wu X et al (2020) Circular RNA: A novel potential biomarker for skin diseases. Pharmacol Res 158:104841

    CAS  PubMed  Google Scholar 

  • Wu P et al (2021) N6-methyladenosine modification of circCUX1 confers radioresistance of hypopharyngeal squamous cell carcinoma through caspase1 pathway. Cell Death Dis 12(4):298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao W et al (2016) Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell 61(4):507–519

    CAS  PubMed  Google Scholar 

  • Xie F et al (2021) CircPTPRA blocks the recognition of RNA N(6)-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol Cancer 20(1):68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C et al (2014) Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol 10(11):927–929

    CAS  PubMed  Google Scholar 

  • Xu J et al (2020) N(6)-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating beta-catenin signaling. Mol Cancer 19(1):163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2017a) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27(5):626–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z et al (2017b) MicroRNA-145 modulates N(6)-Methyladenosine levels by targeting the 3’-Untranslated mRNA region of the N(6)-Methyladenosine binding YTH domain family 2 protein. J Biol Chem 292(9):3614–3623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D et al (2018a) N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res 46(8):3906–3920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2018b) Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 28(6):616–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X et al (2019) m(6)A promotes R-loop formation to facilitate transcription termination. Cell Res 29(12):1035–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X et al (2020) METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer 19(1):46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccara S, Jaffrey SR (2020) A Unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell 181(7):1582–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccara S, Ries RJ, Jaffrey SR (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20(10):608–624

    CAS  PubMed  Google Scholar 

  • Zaphiropoulos PG (1996) Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci U S A 93(13):6536–6541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    CAS  PubMed  Google Scholar 

  • Zhang XO et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147

    CAS  PubMed  Google Scholar 

  • Zhang XO et al (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26(9):1277–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C et al (2020) Circular RNA expression profile and m6A modification analysis in poorly differentiated adenocarcinoma of the stomach. Epigenomics 12(12):1027–1040

    CAS  PubMed  Google Scholar 

  • Zhang Y et al (2021) circRNA N6-methyladenosine methylation in preeclampsia and the potential role of N6-methyladenosine-modified circPAPPA2 in trophoblast invasion. Sci Rep 11(1):24357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao BS, Roundtree IA, He C (2018) Publisher correction: post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 19(12):808

    CAS  PubMed  Google Scholar 

  • Zhao J et al (2019) Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun 10(1):2300

    PubMed  PubMed Central  Google Scholar 

  • Zheng G et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    CAS  PubMed  Google Scholar 

  • Zhou J et al (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526(7574):591–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C et al (2017) Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep 20(9):2262–2276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S et al (2018) FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation. Mol Carcinog 57(5):590–597

    CAS  PubMed  Google Scholar 

  • Zhou KI et al (2019) Regulation of Co-transcriptional Pre-mRNA Splicing by m(6)A through the low-complexity protein hnRNPG. Mol Cell 76(1):70–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou WY et al (2020) Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer 19(1):172

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 82002889).

Author information

Authors and Affiliations

Authors

Contributions

Leyu Zhang consulted relevant literature and write the paper. Jingwen Liu and Xi Wang acted as the assists. Wei Zhao is responsible for the designing and funding. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xi Wang, Wei Zhao or Jingwen Liu.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, X., Zhao, W. et al. Overview of m6A and circRNAs in human cancers. J Cancer Res Clin Oncol 149, 6769–6784 (2023). https://doi.org/10.1007/s00432-023-04610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04610-8

Keywords

Navigation