Skip to main content

Advertisement

Log in

Integrative analyses of bulk and single-cell RNA-seq identified cancer-associated fibroblasts-related signature as a prognostic factor for immunotherapy in NSCLC

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

An emerging view regarding cancer-associated fibroblast (CAF) is that it plays a critical role in tumorigenesis and immunosuppression in the tumor microenvironment (TME), but the clinical significance and biological functions of CAFs in non-small cell lung cancer (NSCLC) are still poorly explored. Here, we aimed to identify the CAF-related signature for NSCLC through integrative analyses of bulk and single-cell genomics, transcriptomics, and proteomics profiling. Using CAF marker genes identified in weighted gene co-expression network analysis (WGCNA), we constructed and validated a CAF-based risk model that stratifies patients into two prognostic groups from four independent NSCLC cohorts. The high-score group exhibits a higher abundance of CAFs, decreased immune cell infiltration, increased epithelial–mesenchymal transition (EMT), activated transforming growth factor beta (TGFβ) signaling, and a limited survival rate compared with the low-score group. Considering the immunosuppressive feature in the high-score group, we speculated an inferior clinical response for immunotherapy in these patients, and this association was successfully verified in two NSCLC cohorts treated with immune checkpoint blockades (ICBs). Furthermore, single-cell RNA sequence datasets were used to clarify the molecular mechanisms underlying the aggressive and immunosuppressive phenotype in the high-score group. We found that one of the genes in the risk model, filamin binding LIM protein 1 (FBLIM1), is mainly expressed in fibroblasts and upregulated in CAFs compared to fibroblasts from normal tissue. FBLIM1-positive CAF subtype was correlated with increased TGFβ expression, higher mesenchymal marker level, and immunosuppressive tumor microenvironment. Finally, we demonstrated that FBLIM1 might serve as a poor prognostic marker for immunotherapy in clinical samples. In conclusion, we identified a novel CAF-based classifier with prognostic value in NSCLC patients and those treated with ICBs. Single-cell transcriptome profiling uncovered FBLIM1-positive CAFs as an aggressive subtype with a high abundance of TGFβ, EMT, and an immunosuppressive phenotype in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

AUC:

Area under curve

CAF:

Cancer-associated fibroblast

DEGs:

Differentially expressed genes

EMT:

Epithelial–mesenchymal transition

EPIC:

Estimating the Proportions of Immune and Cancer cells

ESCC:

Esophageal squamous cell carcinoma

EGFR:

Epidermal growth factor receptor

FBLIM1:

Filamin binding LIM protein 1

GO:

Gene ontology

GSVA:

Gene set variation analysis

GSEA:

Gene set enrichment analysis

irAEs:

Immune-related adverse events

iCAFs:

Inflammatory CAFs

IGF:

Insulin-like growth factor

ICBs:

Immune checkpoint blockades

KEGG:

Kyoto encyclopedia of genes and genomes

LUSC:

Lung squamous carcinoma

LUAD:

Lung adenocarcinoma

MCP-counter:

Microenvironment Cell Populations-counter

MDSCs:

Myeloid-derived suppressor cells

myCAFs:

Myofibroblastic CAFs

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

OSCC:

Oral squamous cell carcinoma

PD1:

Programmed cell death protein 1

PD-L1:

Programmed death-ligand 1

PFS:

Progression-free survival

RNA-seq:

RNA sequence

RPPA:

Reverse phase protein array

ROC:

Receiver operating characteristic curve

scRNA-seq:

Single-cell RNA sequence

ssGSEA:

Single sample gene set enrichment analysis

TME:

Tumor microenvironment

TCPA:

The Cancer Proteome Atlas

TPM:

Transcripts per million

TIDE:

Tumor Immune Dysfunction and Exclusion

TGFβ:

Transforming growth factor beta

TIME:

Tumor immune microenvironment

UMAP:

Uniform manifold approximation and projection

WGCNA:

Weighted gene co-expression network analysis

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  2. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553(7689):446–454

    Article  CAS  PubMed  Google Scholar 

  3. Morad G, Helmink BA, Sharma P, Wargo JA (2021) Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184(21):5309–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pauken KE, Dougan M, Rose NR, Lichtman AH, Sharpe AH (2019) Adverse events following cancer immunotherapy: obstacles and opportunities. Trends Immunol 40(6):511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bejarano L, Jordāo MJC, Joyce JA (2021) Therapeutic targeting of the tumor microenvironment. Cancer Discov 11(4):933–959

    Article  CAS  PubMed  Google Scholar 

  7. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T et al (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20(3):174–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Y, McAndrews KM, Kalluri R (2021) Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 18(12):792–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bremnes RM, Dønnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, Camps C, Marinez I, Busund L-T (2011) The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 6(1):209–217

    Article  PubMed  Google Scholar 

  10. Cruz-Bermúdez A, Laza-Briviesca R, Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S, Alfaro C, Sanchez JC, Franco F, Calvo V et al (2019) Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-β signaling. Free Radic Biol Med 130:163–173

    Article  PubMed  Google Scholar 

  11. Zhang H, Jiang H, Zhu L, Li J, Ma S (2021) Cancer-associated fibroblasts in non-small cell lung cancer: Recent advances and future perspectives. Cancer Lett 514:38–47

    Article  CAS  PubMed  Google Scholar 

  12. Barrett R, Puré E (2020) Cancer-associated fibroblasts: key determinants of tumor immunity and immunotherapy. Curr Opin Immunol 64:80–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakai T, Aokage K, Neri S, Nakamura H, Nomura S, Tane K, Miyoshi T, Sugano M, Kojima M, Fujii S et al (2018) Link between tumor-promoting fibrous microenvironment and an immunosuppressive microenvironment in stage I lung adenocarcinoma. Lung Cancer 126:64–71

    Article  PubMed  Google Scholar 

  14. Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS et al (2020) Cancer-Associated Fibroblasts Promote Immunosuppression by Inducing ROS-Generating Monocytic MDSCs in Lung Squamous Cell Carcinoma. Cancer Immunol Res 8(4):436–450

    Article  CAS  PubMed  Google Scholar 

  15. Yang N, Lode K, Berzaghi R, Islam A, Martinez-Zubiaurre I, Hellevik T (2020) Irradiated Tumor Fibroblasts Avoid Immune Recognition and Retain Immunosuppressive Functions Over Natural Killer Cells. Front Immunol 11:602530

    Article  CAS  PubMed  Google Scholar 

  16. Inoue C, Miki Y, Saito R, Hata S, Abe J, Sato I, Okada Y, Sasano H (2019) PD-L1 induction by cancer-associated fibroblast-derived factors in lung adenocarcinoma cells. Cancers Basel 11(9):1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Derynck R, Turley SJ, Akhurst RJ (2021) TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 1:9–34

    Article  Google Scholar 

  18. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Navab R, Strumpf D, Bandarchi B, Zhu C-Q, Pintilie M, Ramnarine VR, Ibrahimov E, Radulovich N, Leung L, Barczyk M et al (2011) Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci U S A 108(17):7160–7165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shintani Y, Abulaiti A, Kimura T, Funaki S, Nakagiri T, Inoue M, Sawabata N, Minami M, Morii E, Okumura M (2013) Pulmonary fibroblasts induce epithelial mesenchymal transition and some characteristics of stem cells in non-small cell lung cancer. Ann Thorac Surg 96(2):425–433

    Article  PubMed  Google Scholar 

  21. Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, Noeen S, Kattermann K, Greenberg M, Williams A et al (2021) Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell 39(11):1531–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE, Koeppen H, Astarita JL, Cubas R et al (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X et al (2018) TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554(7693):538–543

    Article  CAS  PubMed  Google Scholar 

  24. Batlle E, Massagué J (2019) Transforming growth factor-β signaling in immunity and cancer. Immunity 50(4):924–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  26. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D (2017) Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife 6:e26476

    Article  PubMed  PubMed Central  Google Scholar 

  27. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, Selves J, Laurent-Puig P, Sautès-Fridman C, Fridman WH et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17(1):218

    Article  PubMed  PubMed Central  Google Scholar 

  28. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612

    Article  PubMed  Google Scholar 

  30. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18(1):248–262

    Article  CAS  PubMed  Google Scholar 

  32. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B et al (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24(10):1550–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA et al (2018) The immune landscape of cancer. Immunity 48(4):812–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maeser D, Gruener RF, Huang RS (2021) oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform 6:bbab260

    Article  Google Scholar 

  36. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN et al (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935

    Article  CAS  PubMed  Google Scholar 

  37. Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214(3):579–596

    Article  PubMed  PubMed Central  Google Scholar 

  38. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS et al (2019) Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 9(8):1102–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alfaro-Arnedo E, López IP, Piñeiro-Hermida S, Canalejo M, Gotera C, Sola JJ, Roncero A, Peces-Barba G, Ruíz-Martínez C, Pichel JG (2022) IGF1R acts as a cancer-promoting factor in the tumor microenvironment facilitating lung metastasis implantation and progression. Oncogene 41(28):3625–3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han J, Duan J, Bai H, Wang Y, Wan R, Wang X, Chen S, Tian Y, Wang D, Fei K et al (2020) TCR repertoire diversity of peripheral PD-1CD8 T cells predicts clinical outcomes after immunotherapy in patients with Non-small cell lung cancer. Cancer Immunol Res 8(1):146–154

    Article  CAS  PubMed  Google Scholar 

  41. Yang H, Sun B, Fan L, Ma W, Xu K, Hall SRR, Wang Z, Schmid RA, Peng R-W, Marti TM et al (2022) Multi-scale integrative analyses identify THBS2 cancer-associated fibroblasts as a key orchestrator promoting aggressiveness in early-stage lung adenocarcinoma. Theranostics 12(7):3104–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu C, Thalhamer T, Franca RF, Xiao S, Wang C, Hotta C, Zhu C, Hirashima M, Anderson AC, Kuchroo VK (2014) Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 41(2):270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Giovannone N, Liang J, Antonopoulos A, Geddes Sweeney J, King SL, Pochebit SM, Bhattacharyya N, Lee GS, Dell A, Widlund HR et al (2018) Galectin-9 suppresses B cell receptor signaling and is regulated by I-branching of N-glycans. Nat Commun 9(1):3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang R, Sun L, Li C-F, Wang Y-H, Yao J, Li H, Yan M, Chang W-C, Hsu J-M, Cha J-H et al (2021) Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun 12(1):832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang W-W, Reva B et al (2020) Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182(1):200–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramanathan RK, McDonough SL, Philip PA, Hingorani SR, Lacy J, Kortmansky JS, Thumar J, Chiorean EG, Shields AF, Behl D et al (2019) Phase IB/II randomized study of FOLFIRINOX plus Pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin Oncol 37(13):1062–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6):719–734

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tu Y, Wu S, Shi X, Chen K, Wu C (2003) Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 113(1):37–47

    Article  CAS  PubMed  Google Scholar 

  49. Wu C (2005) Migfilin and its binding partners: from cell biology to human diseases. J Cell Sci 118(Pt 4):659–664

    Article  CAS  PubMed  Google Scholar 

  50. Papachristou DJ, Gkretsi V, Tu Y, Shi X, Chen K, Larjava H, Rao UNM, Wu C (2007) Increased cytoplasmic level of migfilin is associated with higher grades of human leiomyosarcoma. Histopathology 51(4):499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ou Y, Ma L, Dong L, Ma L, Zhao Z, Ma L, Zhou W, Fan J, Wu C, Yu C et al (2012) Migfilin protein promotes migration and invasion in human glioma through epidermal growth factor receptor-mediated phospholipase C-γ and STAT3 protein signaling pathways. J Biol Chem 287(39):32394–32405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. He H, Ding F, Li S, Chen H, Liu Z (2014) Expression of migfilin is increased in esophageal cancer and represses the Akt-β-catenin activation. Am J Cancer Res 4(3):270–278

    PubMed  PubMed Central  Google Scholar 

  53. Ou Y, Wu Q, Wu C, Liu X, Song Y, Zhan Q (2017) Migfilin promotes migration and invasion in glioma by driving EGFR and MMP-2 signalings: A positive feedback loop regulation. J Genet Genomics 44(12):557–565

    Article  PubMed  Google Scholar 

  54. Bai N, Peng E, Qiu X, Lyu N, Zhang Z, Tao Y, Li X, Wang Z (2018) circFBLIM1 act as a ceRNA to promote hepatocellular cancer progression by sponging miR-346. J Exp Clin Cancer Res 37(1):172

    Article  PubMed  PubMed Central  Google Scholar 

  55. Toeda Y, Kasamatsu A, Koike K, Endo-Sakamoto Y, Fushimi K, Kasama H, Yamano Y, Shiiba M, Tanzawa H, Uzawa K (2018) FBLIM1 enhances oral cancer malignancy via modulation of the epidermal growth factor receptor pathway. Mol Carcinog 57(12):1690–1697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the specimen donors and research groups for the TCGA, GSE37745, GSE41271, GSE42127, GSE126044, GSE135222, GSE78220, GSE131907, and CHCAMS cohort, which provided valuable data resources for this article.

Funding

This work was supported by the grant from the National Natural Science Foundation of China (No.81871739, No.82172856). The funders had no role in the study design, data extraction, statistical analysis, and manuscript writing.

Author information

Authors and Affiliations

Authors

Contributions

XH, YS, SW, and GF were responsible for the conception and design of the study. SW, GF, YH, TX, NL, LD, RG, and MY conducted the bioinformatic analysis and prepared all the figures and tables. LL was involved in the collection of tumor tissue samples and experimental operations. XH, YS, SW, GF, LL, and YH contributed significantly to data interpretation, statistical analysis, and manuscript writing. All authors reviewed, revised, and approved the final manuscript.

Corresponding authors

Correspondence to Yuankai Shi or Xiaohong Han.

Ethics declarations

Conflict of interest

All authors declare no potential conflicts of interest.

Ethical approval

Study of clinical samples from included NSCLC patients treated with immunotherapy were approved by the medical ethics committee of Cancer Hospital, CAMS and PUMC (No.19–019/1804).

Additional information

Shasha Wang, Guangyu Fan and Lin Li have contributed equally to this work

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 6247 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Fan, G., Li, L. et al. Integrative analyses of bulk and single-cell RNA-seq identified cancer-associated fibroblasts-related signature as a prognostic factor for immunotherapy in NSCLC. Cancer Immunol Immunother 72, 2423–2442 (2023). https://doi.org/10.1007/s00262-023-03428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03428-0

Keywords

Navigation