1 Introduction and Main Results

A weight is a non-negative locally integrable function. Given \(p\), \(1<p<\infty \), an \(A_p\) weight is one that satisfies the following

$$\begin{aligned}{}[w]_{A_p} =\sup _Q \left( \frac{1}{|Q|}\int \limits _Q w\right) \left( \frac{1}{|Q|}\int \limits _Q w^{1-p'}\right) ^{p-1}<\infty . \end{aligned}$$

It is well known that the Hardy–Littlewood maximal operator and Calderón–Zygmund operators are bounded on \(L^p(w)\) when \(w\in A_p\). The sharp dependence for the Hardy–Littlewood maximal function is given by

$$\begin{aligned} \Vert M\Vert _{L^p(w)\rightarrow L^p(w)}\le C_{n,p}[w]_{A_p}^{\frac{p'}{p}}. \end{aligned}$$
(1.1)

Inequality (1.1) was first proven by Buckley [1]. (We refer the reader to [16] for a beautiful proof of this inequality and a summary of the history.) Later it was proven by Hytönen [9] that if \(T\) is a Calderón–Zygmund operator then

$$\begin{aligned} \Vert T\Vert _{L^p(w)\rightarrow L^p(w)}\le C_{n,p,T}[w]_{A_p}^{\max (1,\frac{p'}{p})}. \end{aligned}$$
(1.2)

Again, we refer the reader to [5, 10, 15, 17] for the background material and further references. Later (1.2) was improved in [1113]. In this article we prove the multilinear analogs of inequalities (1.1) and (1.2). We begin with a few definitions.

First, let us define multiple \(A_{\vec {P}}\) weights. Lerner et al. [18] introduced the theory of multiple \(A_{\vec {P}}\) weights beginning with the following definition.

Definition 1.1

Let \(\vec {P}=(p_1,\cdots ,p_m)\) with \(1\le p_1,\cdots ,p_m<\infty \) and \(1/{p_1}+\cdots +1/{p_m}=1/p\). Given \(\vec {w}=(w_1,\cdots , w_m)\), set

$$\begin{aligned} v_{\vec {w}}=\prod _{i=1}^m w_i^{p/{p_i}}. \end{aligned}$$

We say that \(\vec {w}\) satisfies the multilinear \(A_{\vec {P}}\) condition if

$$\begin{aligned}{}[\vec {w}]_{A_{\vec {P}}}:=\sup _Q \left( \frac{1}{|Q|}\int \limits _Q v_{\vec {w}}\right) \prod _{i=1}^m\left( \frac{1}{|Q|}\int \limits _Q w_i^{1-p_i'}\right) ^{p/{p_i'}}<\infty , \end{aligned}$$

where \([\vec {w}]_{A_{\vec {P}}}\) is called the \(A_{\vec {P}}\) constant of \(\vec {w}\). When \(p_i=1\), \(( \frac{1}{|Q|}\int \limits _Q w_i^{1-p_i'})^{1/{p_i'}}\) is understood as \((\inf _Q w_i)^{-1}\).

It is easy to see that in the linear case (that is, if \(m = 1\)) \([\vec {w}]_{A_{\vec {P}}}=[w]_{A_p}\) is the usual \(A_p\) constant. In [18], it was shown that for \(1<p_1,\cdots ,p_m<\infty \), \(\vec {w}\in A_{\vec {P}}\) if and only if \(w_i^{1-p_i'}\in A_{mp_i'}\) and \(v_{\vec {w}}\in A_{mp}\).

Given \(\vec {f}=(f_1,\cdots ,f_m)\), we define the multilinear maximal function by

$$\begin{aligned} \mathcal {M}(\vec {f})=\sup _{Q\ni x}\prod _{i=1}^m\frac{1}{|Q|}\int \limits _{Q}|f_i|. \end{aligned}$$

In [18], the authors proved that \(\vec {w}\in A_{\vec {P}}\) if and only if

$$\begin{aligned} \Vert \mathcal {M}(\vec {f})\Vert _{L^p(v_{\vec {w}})}\le C \prod _{i=1}^m \Vert f_i\Vert _{L^{p_i}(w_i)}. \end{aligned}$$

Recall that inequality (1.1) is sharp in the sense that the exponent on \([w]_{A_p}\) cannot be improved. The analogous question for the operator \(\mathcal {M}\) has remained open. In [6], using mixed estimates involving \(A_\infty \), Damián, Lerner and Pérez proved the following result.

Theorem A

[6, Theorem 1.2] Let \(1<p_i<\infty \), \(i=1,\cdots ,m\) and \(1/p=1/{p_1}+\cdots +1/{p_m}\). Denote by \(\alpha =\alpha (p_1,\cdots ,p_m)\) the best possible power in

$$\begin{aligned} \Vert \mathcal {M}(\vec {f})\Vert _{L^p(v_{\vec {w}})}\le C_{m,n,\vec {P}} [\vec {w}]_{A_{\vec {P}}}^\alpha \prod _{i=1}^m \Vert f_i\Vert _{L^{p_i}(w_i)}. \end{aligned}$$
(1.3)

Then the following results hold:

  1. (1)

    for all \(1<p_1,\cdots ,p_m<\infty \), \(\frac{m}{mp-1}\le \alpha \le \frac{1}{p}\left( 1+\sum _{i=1}^m\frac{1}{p_i-1}\right) \).

  2. (2)

    if \(p_1 = p_2 = \cdots = p_m = r > 1\), then \(\alpha =\frac{m}{r-1}\).

Interestingly, the mixed estimates involving \(A_\infty \) do not yield the sharp dependence on the constant \([\vec w]_{A_{\vec {P}}}\). The sharp bound along the diagonal is obtained using similar methods to those found in [16] and these techniques only seem to work along the diagonal. In this paper we find the optimal power on \([\vec {w}]_{A_{\vec {P}}}\) for the full range of exponents, \(1<p_1,\ldots ,p_m<\infty \). We emphasize that our results below not only improve those in Theorem A, but are also the best possible.

Theorem 1.2

Suppose \(1<p_1,\ldots ,p_m<\infty \), \(1/p=1/{p_1}+\cdots +1/{p_m}\), and \(\vec {w}\in A_{\vec P}\). Then

$$\begin{aligned} \Vert \mathcal {M}(\vec {f})\Vert _{L^p(v_{\vec {w}})}\le C_{m,n,\vec {P}} [\vec {w}]_{A_{\vec {P}}}^{\max (\frac{p_1'}{p},\cdots , \frac{p_m'}{p})}\prod _{i=1}^m \Vert f_i\Vert _{L^{p_i}(w_i)}. \end{aligned}$$
(1.4)

Moreover the exponent on \([\vec w]_{A_{\vec P}}\) is the best possible. See Fig. 1 for a visualization of the bilinear case.

Fig. 1
figure 1

The sharp exponents on \([\vec w]_{A_{\vec {P}}}\) for the bilinear maximal function

Next we turn to study weighted bounds of multilinear Calderón–Zygmund operators. The theory of multilinear Calderón–Zygmund operators originated in the works of Coifman and Meyer [3, 4] and was later developed by Christ and Journé [2], Kenig and Stein [14], and Grafakos and Torres [8]. The last work provides a comprehensive account of general multilinear Calderón–Zygmund operators which we follow in this paper.

Definition 1.3

Let \(T\) be a multilinear operator initially defined on the \(m\)-fold product of Schwartz spaces and taking values into the space of tempered distributions,

$$\begin{aligned} T: \fancyscript{S}(\mathbb {R}^n)\times \cdots \times \fancyscript{S}(\mathbb {R}^n)\rightarrow \fancyscript{S}'(\mathbb {R}^n). \end{aligned}$$

we say that \(T\) is an \(m\)-linear Calderón–Zygmund operator if, for some \(1\le q_i<\infty \), it extends to a bounded multilinear operator from \(L^{q_1} \times \cdots \times L^{q_m}\) to \(L^q\) , where \(1/{q_1}+\cdots +1/{q_m}=1/q\), and if there exists a function \(K\), defined off the diagonal \(x=y_1=\cdots =y_m\) in \((\mathbb {R}^n)^{m+1}\), satisfying

$$\begin{aligned} T(f_1,\cdots ,f_m)(x)=\int \limits _{(\mathbb {R}^n)^m}K(x,y_1,\cdots ,y_m)f_1(y_1)\cdots f_m(y_m)dy_1\cdots dy_m \end{aligned}$$

for all \(x\notin \bigcap _{j=1}^m\mathrm{supp}\ f_i\) and

$$\begin{aligned} |K(y_0,y_1,\cdots ,y_m)|\le \frac{A}{(\sum _{k,l=0}^m |y_k-y_l|)^{mn}} \end{aligned}$$

and

$$\begin{aligned} |K(y_0,\cdots ,y_i,\cdots ,y_m)-K(y_0,\cdots ,y_i',\cdots ,y_m)|\le \frac{A|y_i-y_i'|^\varepsilon }{(\sum _{k,l=0}^m |y_k-y_l|)^{mn+\varepsilon }} \end{aligned}$$

for some \(A,\varepsilon >0\) and all \(0\le i\le m\), whenever \(|y_i-y_i'|\le \frac{1}{2}\max _{0\le k\le m}|y_i-y_k|\).

It was shown in [8] that if \(1/{r_1}+\cdots +1/{r_m}=1/r\), then an \(m\)-linear Calderón–Zygmund operator \(T\) is bounded from \(L^{r_1}\times \cdots \times L^{r_m}\) to \(L^r\) when \(1<r_i<\infty \) for all \(i=1,\cdots ,m \); and \(T\) is bounded from \(L^{r_1}\times \cdots \times L^{r_m}\) to \(L^{r,\infty }\) when at least one \(r_i=1\). In particular, \(T\) is bounded from \(L^1\times \cdots \times L^1\) to \(L^{1/m,\infty }\).

A weighted theory for \(m\)-linear Calderón–Zygmund operators was developed in [18], where it was shown that such operators are bounded from \(L^{p_1}(w_1)\times \cdots \times L^{p_m}(w_m)\) to \(L^{p}(v_{\vec {w}})\) when \(\vec {w}\in A_{\vec {P}}\). In [6], the authors proved a multilinear version of the \(A_2\) conjecture. Specifically, for \(p_1=\cdots =p_m=m+1\), it was shown that

$$\begin{aligned} \Vert T(\vec {f})\Vert _{L^p(v_{\vec {w}})}\lesssim [\vec {w}]_{A_{\vec {P}}}\prod _{i=1}^m\Vert f_i\Vert _{L^{p_i}(w_i)}, \end{aligned}$$

where the estimate for the power of \([\vec {w}]_{A_{\vec {P}}}\) is the best possible.

Due to the lack of an appropriate extrapolation theorem for multilinear operators with multiple weights, let alone a version with good constants, the sharp estimate is unknown for any other choices of \(p_i\). In this paper, we give a sharp estimate for the case of \(p\ge 1\). Specifically, we prove the following Theorem and refer the reader to Fig. 2 for a visualization of the bilinear case.

Theorem 1.4

Let \(T\) be a multilnear Calderón–Zygmund operator, \(\vec {P}=(p_1,\cdots ,p_m)\) with \(1<p_1,\cdots ,p_m<\infty \) and \(1/{p_1}+\cdots +1/{p_m}=1/p\le 1\). If \(\vec {w}=(w_1,\cdots , w_m)\in A_{\vec {P}}\), then

$$\begin{aligned} \Vert T(f)\Vert _{L^p(v_{\vec {w}})}\le C_{n,m,{\vec {P}},T}[\vec {w}]_{A_{\vec {P}}}^{\max (1,\frac{p_1'}{p},\ldots ,\frac{p_m'}{p})}\prod _{i=1}^m\Vert f_i\Vert _{L^{p_i}(w_i)}. \end{aligned}$$
(1.5)

Moreover, for certain multilinear operators the exponent on \([\vec {w}]_{A_{\vec {P}}}\) is the best possible.

Fig. 2
figure 2

The sharp exponents on \([\vec w]_{A_{\vec {P}}}\) for bilinear Calderón–Zygmund operators when \(p\ge 1\)

In order to prove Theorem 1.4 we will approximate multilinear Calderón–Zygmund operators by positive dyadic operators. The result of Damián et al. [6] states the following (see Sect. 2 for pertinent definition).

Theorem 1.5

[6, Theorem 1.4] Let \(T\) be a multilinear Calderón–Zygmund operator and let \(\mathcal {X}\) be a Banach function space over \(\mathbb {R}^n\) equipped with Lebesgue measure. Then, for any appropriate \(\vec {f}\),

$$\begin{aligned} \Vert T(\vec {f})\Vert _{\mathcal {X}}\le C_{T,m,n}\sup _{\fancyscript{D},\mathcal {S}}\Vert A_{\fancyscript{D},\mathcal {S}}(|\vec {f}|)\Vert _{\mathcal {X}}. \end{aligned}$$
(1.6)

When \(p\ge 1\), \(\mathcal {X}=L^p(v)\) is a Banach space. However, for \(0<p<1\) it is not. Since the \(m\)-linear operators map into \(L^p\) for \(p>1/m\) we are are unable to obtain the full range. It is an interesting question as to whether the same decomposition can be obtained for non Banach spaces such as \(L^p\) for \(0<p<1\). Moreover, we believe that inequality (1.5) should hold for all \(1<p_1,\ldots ,p_m<\infty \).

We will actually prove the estimate in Theorem 1.4 for the sparse operators \(A_{\fancyscript{D},\mathcal {S}}\). For these operators, the main techniques are an extension of those found in [19], in which the second author proved the sharp weighted bound for linear Calderón–Zygmund operators without extrapolation.

The rest of this article is devoted to the following. In Sect. 2 we state some brief preliminary material. In Sect. 3 we will prove the main estimates in Theorems 1.2 and 1.4 and in Sect. 4 we will provide examples to show that our results are sharp.

2 Preliminaries

Recall that the standard dyadic grid in \(\mathbb {R}^n\) consists of the cubes

$$\begin{aligned} 2^{-k}([0,1)^n+j),\quad k\in \mathbb {Z}, j\in \mathbb {Z}^n. \end{aligned}$$

Denote the standard grid by \(\mathcal D\).

By a general dyadic grid \(\fancyscript{D}\) we mean a collection of cubes with the following properties: (i) for any \(Q\in \fancyscript{D}\) its sidelength, \(l_Q\), is of the form \(2^k\), \(k\in \mathbb {Z}\); (ii) \(Q\cap R \in \{Q,R,\varnothing \}\) for any \(Q,R\in \fancyscript{D}\); (iii) the cubes of a fixed sidelength \(2^k\) form a partition of \(\mathbb {R}^n\).

Now we define the dyadic maximal function with respect to arbitrary weight

$$\begin{aligned} M_{w}^{\fancyscript{D}}f(x)=\sup _{Q\ni x, Q\in \fancyscript{D}}\frac{1}{w(Q)}\int \limits _Q |f|w. \end{aligned}$$

It is well-known that

$$\begin{aligned} \Vert M_{w}^{\fancyscript{D}}f\Vert _{L^p(w)}\le p'\Vert f\Vert _{L^p(w)},\quad 1<p<\infty , \end{aligned}$$
(2.1)

we refer the readers to [19] for a proof.

We will also need the notion of a sparse family of cubes. Given a dyadic grid \(\fancyscript{D}\) we say that a family \(\mathcal {S}\) is sparse if there are disjoint majorizing subsets, that is, for each \(Q\in \mathcal {S}\) there exists \(E_Q\subset Q\) such that \(\{E_Q\}_{Q\in \mathcal {S}}\) is pairwise disjoint and \(|E_Q|\ge \frac{1}{2}|Q|\). Sparse families have long played a role in Calderón–Zygmund theory, our definition can be found in [10]. Finally, in [6], the multilinear sparse operators,

$$\begin{aligned} A_{\fancyscript{D},\mathcal {S}}(\vec {f})=\sum _{Q\in \mathcal {S}}\bigg ( \prod _{i=1}^m \frac{1}{|Q|}\int \limits _{Q}f_i\bigg )\chi ^{}_{Q}, \end{aligned}$$

were defined and used to approximate multlinear Calderón–Zygmund operators (see Theorem 1.5).

3 Proof of Theorems 1.2 and 1.4

First, we give a proof for Theorem 1.2.

Proof of Theorem 1.2

In [6], the authors proved that there exists \(2^n\) families of dyadic grids \(\fancyscript{D}_\beta \) such that

$$\begin{aligned} \mathcal {M}(\vec {f})(x)\le 6^{mn}\sum _{\beta =1}^{2^n}\mathcal {M}^{\fancyscript{D}_\beta }(\vec {f})(x), \end{aligned}$$

where

$$\begin{aligned} \mathcal {M}^{\fancyscript{D}_\beta }(\vec {f})(x)=\sup _{Q\ni x, Q\in \fancyscript{D}_\beta }\prod _{i=1}^m\frac{1}{|Q|}\int \limits _{Q}|f_i|. \end{aligned}$$

Without loss of generality, it suffices to prove that

$$\begin{aligned} \Vert \mathcal {M}^{\fancyscript{D}}(\vec {f\sigma })\Vert _{L^p(v_{\vec {w}})}\le C_{m,n,\vec {P}} [\vec {w}]_{A_{\vec {P}}}^{\max _i(\frac{p_i^\prime }{p})}\prod _{i=1}^m \Vert f_i\Vert _{L^{p_i}(\sigma _i)}. \end{aligned}$$

for a general dyadic grid \(\fancyscript{D}\), and \(\mathcal {M}^\fancyscript{D}(\vec {f\sigma })=\mathcal {M}^\fancyscript{D}(f_1\sigma _1,\ldots ,f_m\sigma _m)\). Moreover, it was shown in [6, Lemma 2.2] that there exists a sparse subset \(\mathcal {S}\subset \fancyscript{D}\) such that

$$\begin{aligned} \mathcal {M}^{\fancyscript{D}}(\vec {f\sigma })\lesssim \sum _{Q\in \mathcal {S}}\prod _{i=1}^m\left( \frac{1}{|Q|}\int \limits _Q |f_i|\sigma _i\,\right) \chi _{E_Q}. \end{aligned}$$

Without loss of generality, assume that \(p_1=\min \{p_1,\cdots ,p_m\}\). We have

$$\begin{aligned} \int \limits _{\mathbb {R}^n}\mathcal {M}^{\fancyscript{D}}(\vec {f\sigma })^pv_{\vec {w}}&\lesssim \sum _{Q\in \mathcal {S}} \prod _{i=1}^m\left( \frac{1}{|Q|}\int \limits _Q |f_i|\sigma _i\,\right) ^pv_{\vec {w}}(Q)\\&= \sum _{Q\in \mathcal {S}}\frac{v_{\vec {w}}(Q)^{p_1'}\prod _{i=1}^m\sigma _i(Q)^{pp_1'/{p_i'}}}{|Q|^{mpp_1'}}\bigg ( \prod _{i=1}^m \int \limits _{Q}|f_i|\sigma _i \bigg )^p\nonumber \\&\quad \times \frac{|Q|^{mp(p_1'-1)}}{v_{\vec {w}}(Q)^{p_1'-1}\prod _{i=1}^m\sigma _i(Q)^{pp_1'/{p_i'}}}\nonumber \\&\le [\vec {w}]_{A_{\vec {P}}}^{p_1'}\sum _{Q\in \mathcal {S}}\frac{2^{mp(p_1'-1)}|E_Q|^{mp(p_1'-1)}}{v_{\vec {w}}(Q)^{p_1'-1}\prod _{i=1}^m\sigma _i(Q)^{pp_1'/{p_i'}}}\cdot \bigg ( \prod _{i=1}^m \int \limits _{Q}|f_i|\sigma _i \bigg )^p.\nonumber \end{aligned}$$

By Hölder’s inequality, we have

$$\begin{aligned} |E_Q|&= \int \limits _{E_Q}v_{\vec {w}}^{\frac{1}{mp}}\sigma _1^{\frac{1}{mp_1'}}\cdots \sigma _m^{\frac{1}{mp_m'}} \\&\le v_{\vec {w}}(E_Q)^{\frac{1}{mp}}\sigma _1(E_Q)^{\frac{1}{mp_1'}}\cdots \sigma _m(E_Q)^{\frac{1}{mp_m'}}\nonumber . \end{aligned}$$
(3.1)

Therefore,

$$\begin{aligned} |E_Q|^{mp(p_1'-1)}\le v_{\vec {w}}(E_Q)^{p_1'-1}\sigma _1(E_Q)^{\frac{p(p_1'-1)}{p_1'}}\cdots \sigma _m(E_Q)^{\frac{p(p_1'-1)}{p_m'}} \end{aligned}$$

and

$$\begin{aligned} \frac{p(p_1'-1)}{p_i'}-\frac{p}{p_i}=\frac{pp_1'}{p_i'}-p\ge 0. \end{aligned}$$

Since \(E_Q\subset Q\), we have

$$\begin{aligned} v_{\vec {w}}(E_Q)^{p_1'-1}\le v_{\vec {w}}(Q)^{p_1'-1} \end{aligned}$$

and hence

$$\begin{aligned} \sigma _i(E_Q)^{\frac{p(p_1'-1)}{p_i'}-\frac{p}{p_i}}\le \sigma _i(Q)^{\frac{pp_1'}{p_i'}-p},\quad i=1,\cdots ,m. \end{aligned}$$

It follows that

$$\begin{aligned}&\sum _{Q\in \mathcal {S}}\frac{|E_Q|^{mp(p_1'-1)}}{v_{\vec {w}}(Q)^{p_1'-1}\prod _{i=1}^m\sigma _i(Q)^{pp_1'/{p_i'}}} \cdot \bigg ( \prod _{i=1}^m \int \limits _{Q}|f_i|\sigma _i\bigg )^p\\&\quad \le \sum _{Q\in \mathcal {S}}\prod _{i=1}^m \bigg ( \frac{1}{\sigma _i(Q)}\int \limits _{Q}|f_i|\sigma _i\bigg )^p \sigma _i(E_Q)^{p/{p_i}}\nonumber \\&\quad \le \prod _{i=1}^m\left( \sum _{Q\in \mathcal {S}}\bigg (\frac{1}{\sigma _i(Q)}\int \limits _{Q}|f_i|\sigma _i \bigg )^{p_i} \sigma _i(E_{Q})\right) ^{p/{p_i}}\nonumber \\&\quad \le \prod _{i=1}^m\Vert M_{\sigma _i}^{\fancyscript{D}}(f_i)\Vert _{L^{p_i}(\sigma _i)}^p\nonumber \\&\quad \lesssim \prod _{i=1}^m\Vert f_i\Vert _{L^{p_i}(\sigma _i)}^p.\nonumber \end{aligned}$$

Hence

$$\begin{aligned} \Vert \mathcal {M}^{\fancyscript{D}}(\vec {f})\Vert _{L^p(v_{\vec {w}})}\le C_{m,n,\vec {P}} [\vec {w}]_{A_{\vec {P}}}^{\max _i(\frac{p_i'}{p})}\prod _{i=1}^m \Vert f_i\Vert _{L^{p_i}(w_i)}. \end{aligned}$$

This completes the proof. \(\square \)

We now turn our attention to the proof of Theorem 1.4. First, we note the following symmetry of \(A_{\vec {P}}\) weights.

Lemma 3.1

Suppose that \(\vec {w}=(w_1,\cdots ,w_m)\in A_{\vec {P}}\) and that \(1<p\), \(p_1\), \(\cdots \), \(p_m<\infty \) with \(1/{p_1}+\cdots +1/{p_m}=1/p\). Then \(\vec {w}^i:=(w_1\), \(\cdots \), \(w_{i-1}\), \(v_{\vec {w}}^{1-p'}\), \(w_{i+1}\), \(\cdots \), \(w_m)\in A_{\vec {P}^i}\) with \(\vec {P}^i=(p_1,\cdots , p_{i-1}, p', p_{i+1},\cdots ,p_m)\) and

$$\begin{aligned}{}[\vec {w}^i]_{A_{\vec {P}^i}}=[\vec {w}]_{A_{\vec {P}}}^{p_i'/p}. \end{aligned}$$

Proof

We will prove the conclusion for \(i=1\); the other cases are similar. Notice that

$$\begin{aligned} 1/{p'}+1/{p_{2}}+\cdots +1/{p_m}=1/{p_1'} \end{aligned}$$

and

$$\begin{aligned} v_{\vec {w}}^{(1-p')p_1'/{p'}}\cdot w_{2}^{p_1'/{p_{2}}}\cdots w_m^{p_1'/p_m}=w_1^{1-p_1'}. \end{aligned}$$

By the definition of multiple \(A_{\vec {P}}\) constant, we have

$$\begin{aligned}{}[\vec {w}^1]_{A_{\vec {P}^1}}&= \sup _Q \left( \frac{1}{|Q|}\int \limits _Q w_1^{1-p_1'}\right) \cdot \left( \frac{1}{|Q|}\int \limits _Q (v_{\vec {w}}^{1-p'})^{1-p}\right) ^{p_1'/p}\\&\quad \times \prod _{i=2}^m\left( \frac{1}{|Q|}\int \limits _Q w_i^{1-p_i'}\right) ^{p_1'/{p_i'}}\\&= [\vec {w}]_{A_{\vec {P}}}^{p_1'/p}. \end{aligned}$$

\(\square \)

By Theorem 1.5 we reduce our problem to consider the behavior of the operator \(A_{\fancyscript{D},\mathcal {S}}\). For these operators we have the following Theorem, which holds for all \(1<p_1,\ldots ,p_m<\infty \).

Theorem 3.2

Suppose that \(1<p_1,\cdots ,p_m\) \(<\infty \) with \(1/{p_1}+\cdots +1/{p_m}=1/p\) and \(\vec {w}\in A_{\vec {P}}\). Then

$$\begin{aligned} \Vert A_{\fancyscript{D},\mathcal {S}}(\vec {f})\Vert _{L^p(v_{\vec {w}})}\lesssim [\vec {w}]^{\max (1,\frac{p_1'}{p},\ldots ,\frac{p_m'}{p})}_{A_{\vec {P}}}\prod _{i=1}^m\Vert f_i\Vert _{L^{p_i}(w_i)}. \end{aligned}$$

Proof

We first consider the case when \(\frac{1}{m}<p\le 1\). In this case

$$\begin{aligned} \int \limits _{\mathbb {R}^n}A_{\fancyscript{D},\mathcal {S}}(\vec {f})^pv_{\vec {w}}\le \sum _{Q\in \mathcal {S}}\left( \prod _{i=1}^m\frac{1}{|Q|}\int \limits _Q f_i\right) ^pv_{\vec {w}}(Q), \end{aligned}$$

which can be handled in exactly the same manner as the estimates in proof of Theorem 1.2.

Now consider the case \(p\ge \max _i p_i'\). It is sufficient to prove that

$$\begin{aligned} \Vert A_{\fancyscript{D},\mathcal {S}}(\vec {f\sigma })\Vert _{L^p(v_{\vec {w}})}\lesssim [\vec {w}]_{A_{\vec {P}}}\prod _{i=1}^m\Vert f_i\Vert _{L^{p_i}(\sigma _i)}, \end{aligned}$$

where \(\sigma _i=w_i^{1-p_i'}\), \(A_{\fancyscript{D},\mathcal {S}}(\vec {f\sigma })= A_{\fancyscript{D},\mathcal {S}}(f_1\sigma _1,\cdots , f_m\sigma _m)\), and \(f_i\ge 0\). By duality, it suffices to estimate the \((m+1)\)-linear form

$$\begin{aligned} \int \limits _{\mathbb {R}^n} A_{\fancyscript{D},\mathcal {S}}(\vec {f\sigma })g v_{\vec {w}}= \sum _{Q\in \mathcal {S}} \int \limits _{Q} g v_{\vec {w}}\cdot \prod _{i=1}^m \frac{1}{|Q|}\int \limits _{Q}f_i\sigma _i \end{aligned}$$

for \(g\ge 0\) belonging to \(L^{p'}(v_{\vec {w}})\). We have

$$\begin{aligned}&{\sum _{Q\in \mathcal {S}} \int \limits _{Q}g v_{\vec {w}}\cdot \prod _{i=1}^m \frac{1}{|Q|}\int \limits _{Q}f_i\sigma _i }\\&\quad =\sum _{Q\in \mathcal {S}} \frac{v_{\vec {w}}(Q)\prod _{i=1}^m \sigma _i(Q)^{p/{p_i'}}}{|Q|^{mp}}\cdot \frac{|Q|^{m(p-1)}}{v_{\vec {w}}(Q)\prod _{i=1}^m \sigma _i(Q)^{p/{p_i'}}}\cdot \int \limits _{Q}g v_{\vec {w}}\cdot \prod _{i=1}^m \int \limits _{Q}f_i\sigma _i \\&\quad \le [\vec {w}]_{A_{\vec {P}}}\sum _{Q\in \mathcal {S}}\frac{|Q|^{m(p-1)}}{v_{\vec {w}}(Q)\prod _{i=1}^m \sigma _i(Q)^{p/{p_i'}}} \cdot \int \limits _{Q}g v_{\vec {w}}\cdot \prod _{i=1}^m \int \limits _{Q}f_i\sigma _i \\&\quad \le [\vec {w}]_{A_{\vec {P}}}\sum _{Q\in \mathcal {S}}\frac{2^{m(p-1)}|E_Q|^{m(p-1)}}{v_{\vec {w}}(Q)\prod _{i=1}^m \sigma _i(Q)^{p/{p_i'}}} \cdot \int \limits _{Q}g v_{\vec {w}}\cdot \prod _{i=1}^m \int \limits _{Q}f_i\sigma _i . \end{aligned}$$

By (3.1),

$$\begin{aligned} |E_Q|\le v_{\vec {w}}(E_Q)^{\frac{1}{mp}}\sigma _1(E_Q)^{\frac{1}{mp_1'}}\cdots \sigma _m(E_Q)^{\frac{1}{mp_m'}}. \end{aligned}$$

Since \(p\ge \max _i\{p_i'\}\) and \(E_Q\subset Q\), we have \(\sigma _i(Q)^{1-\frac{p}{p_i'}}\le \sigma _i(E_Q)^{1-\frac{p}{p_i'}}\) for any \(i=1,\cdots ,m\). Therefore,

$$\begin{aligned}&\sum _{Q\in \mathcal {S}} \int \limits _{Q}g v_{\vec {w}}\cdot \prod _{i=1}^m \frac{1}{|Q|}\int \limits _{Q}f_i\sigma _i \\&\le 2^{m(p-1)}[\vec {w}]_{A_{\vec {P}}}\sum _{j,k}v_{\vec {w}}(E_Q)^{\frac{1}{p'}}\prod _{i=1}^m \sigma _i(E_Q)^{\frac{p-1}{p_i'}}\sigma _i(Q)^{1-\frac{p}{p_i^{\prime }}}\\&\quad \times \frac{1}{v_{\vec {w}}(Q)}\int \limits _{Q}g v_{\vec {w}}\cdot \prod _{i=1}^m \frac{1}{\sigma _i(Q)}\int \limits _{Q}f_i\sigma _i \\&\le 2^{m(p-1)}[\vec {w}]_{A_{\vec {P}}}\sum _{Q\in \mathcal {S}}v_{\vec {w}}(E_Q)^{\frac{1}{p'}}\prod _{i=1}^m \sigma _i(E_Q)^{\frac{1}{p_i}} \frac{1}{v_{\vec {w}}(Q)}\int \limits _{Q}g v_{\vec {w}}\\&\quad \times \prod _{i=1}^m \frac{1}{\sigma _i(Q)}\int \limits _{Q}f_i\sigma _i \\&\le 2^{m(p-1)}[\vec {w}]_{A_{\vec {P}}}\left( \sum _{Q\in \mathcal {S}}\bigg (\frac{1}{v_{\vec {w}}(Q)}\int \limits _{Q}g v_{\vec {w}}\bigg )^{p'}v_{\vec {w}}(E_Q)\right) ^{1/{p'}}\\&\quad \times \prod _{i=1}^m\left( \sum _{Q\in \mathcal {S}}\bigg (\frac{1}{\sigma _i(Q)}\int \limits _{Q}f_i \sigma _i \bigg )^{p_i}\sigma _i(E_Q)\right) ^{1/{p_i}}\\&\le 2^{m(p-1)}[\vec {w}]_{A_{\vec {P}}}\Vert M_{v_{\vec {w}}}^{\fancyscript{D}}(g)\Vert _{L^{p'}(v_{\vec {w}})}\prod _{i=1}^m \Vert M_{\sigma _i}^{\fancyscript{D}}(f_i)\Vert _{L^{p_i}(\sigma _i)}\\&\lesssim 2^{m(p-1)}[\vec {w}]_{A_{\vec {P}}}\Vert g\Vert _{L^{p'}(v_{\vec {w}})}\prod _{i=1}^m \Vert f_i\Vert _{L^{p_i}(\sigma _i)}, \end{aligned}$$

where (2.1) is used in the last step. For the other cases we use duality. Notice that the operator \(A_{\fancyscript{D},\mathcal {S}}\) is self adjoint as a multilinear operator, in the sense that for any \(i\), \(i=1,\ldots ,m\), we have

$$\begin{aligned} \int \limits _{\mathbb {R}^n} A_{\fancyscript{D},\mathcal {S}}(f_1,\ldots ,f_m)g= \int \limits _{\mathbb {R}^n} A_{\fancyscript{D},\mathcal {S}}(f_1,\ldots ,f_{i-1},g,f_{i+1},\ldots f_m)f_i. \end{aligned}$$

Without loss of generality suppose \(p_1'\ge \max (p,p_2',\ldots ,p_m')\). Hence, by duality and self adjiontness we have

$$\begin{aligned} \Vert A_{\fancyscript{D},\mathcal {S}}\Vert _{L^{p_1}(w_1)\times \cdots \times L^{p_m}(w_m)\rightarrow L^p(v_{\vec {w}})}&= \Vert A_{\fancyscript{D},\mathcal {S}}\Vert _{L^{p'}(v_{\vec {w}}^{1-p'})\times \cdots \times L^{p_m}(w_m)\rightarrow L^{p_1'}(w_1^{1-p_1'})}\\&\lesssim [\vec {w}^1]_{\vec {P}^1}= [\vec {w}]_{A_{\vec {P}}}^{\frac{p_1'}{p}}. \end{aligned}$$

\(\square \)

4 Examples

Finally, we end with some examples to show that our bounds are sharp. First we show that Theorem 1.2 is sharp. Consider the case \(m=2\) (we leave it to the reader to modify the example for \(m>2\)) and suppose that we had a better exponent than the one in inequality (1.4), that is, suppose

$$\begin{aligned} \Vert \mathcal {M}\Vert _{L^{p_1}(w_1)\times L^{p_2}(w_2) \rightarrow L^p(v_{\vec {w}})}\lesssim [\vec {w}]_{A_{\vec {P}}}^{r\max (\frac{p_1'}{p},\frac{p_2'}{p})} \end{aligned}$$
(4.1)

for some \(r<1\). Further suppose that \(p_1'\ge p_2'\). For \(0<\varepsilon <1\), let \(f_1(x)=|x|^{\varepsilon -n}\chi ^{}_{B(0,1)}(x)\), \(f_2(x)=|x|^{\frac{\varepsilon -n}{p_2}}\chi _{B(0,1)}(x)\), \(w_1(x)=|x|^{(n-\varepsilon )(p_1-1)}\) and \(w_2(x)=1\). Calculations show that

$$\begin{aligned} \Vert f_1\Vert _{L^{p_1}(w_1)}\simeq \varepsilon ^{-{1}/{p_1}}, \Vert f_2\Vert _{L^{p_2}(w_2)}\simeq \varepsilon ^{-1/p_2}, v_{\vec {w}}(x)=|x|^{(n-\varepsilon )\frac{p}{p_1^{\prime }}} \end{aligned}$$

and

$$\begin{aligned}{}[\vec {w}]_{A_{\vec {P}}}\simeq \varepsilon ^{-{p}/{p_1'}}. \end{aligned}$$

For \(x\in B(0,1)\) we have

$$\begin{aligned} \mathcal {M}(f_1,f_2)(x)&\gtrsim \frac{1}{|x|^n}\int \limits _{B(0,|x|)} |y_1|^{\varepsilon -n}\,dy_1 \cdot \frac{1}{|x|^n}\int \limits _{B(0,|x|)} |y_2|^{\frac{\varepsilon -n}{p_2}}\,dy_2\\&\gtrsim \frac{f_1(x)f_2(x)}{\varepsilon \cdot (\frac{\varepsilon -n}{p_2}+n)}\gtrsim \frac{f_1(x)f_2(x)}{\varepsilon }. \end{aligned}$$

Hence,

$$\begin{aligned} \Vert \mathcal {M}(f_1,f_2)\Vert _{L^p(v_{\vec {w}})}&\gtrsim \frac{1}{\varepsilon }\left( \int \limits _{B(0,1)}|x|^{(\varepsilon -n)(p+\frac{p}{p_2}-\frac{p}{p_1'})}\,dx\right) ^{1/p}\\&\simeq \frac{1}{\varepsilon }\left( \int \limits _0^1x^{\varepsilon -1}\,dx\right) ^{1/p}\\&= \frac{1}{\varepsilon }\left( \frac{1}{\varepsilon }\right) ^{1/p}. \end{aligned}$$

Combining this with inequality (4.1) we see for some \(r<1\),

$$\begin{aligned} \left( \frac{1}{\varepsilon }\right) ^{1+\frac{1}{p}}\lesssim \left( \frac{1}{\varepsilon }\right) ^{r+\frac{1}{p}}, \end{aligned}$$

which is impossible as \(\varepsilon \rightarrow 0\).

Next we show that Theorem 1.4 is sharp again when \(m=2\). Recall that the first the bilinear Riesz transform is defined by

$$\begin{aligned} R_1(f_1,f_2)(x)=p.v.\int \limits _{\mathbb {R}^{2n}}\frac{\sum _{j=1}^2(x_1-(y_j)_1)}{(\sum _{j=1}^2|x-y_j|^2)^{(n2+1)/2}}f_1(y_1) f_2(y_2)dy_1 dy_2, \end{aligned}$$

where \((y_j)_1\) denotes the first coordinate of \(y_j\).

Suppose that \(m=2\), \(p_1'\ge p_2'\) and \(p_1'\ge p\). Let

$$\begin{aligned} U&= \{x\in \mathbb {R}^n: |x|\le 1,0<x_i\le x_1,i=2,\cdots ,n\}, \\ V&= \{x\in \mathbb {R}^n:\, |x|\le 1, x_i\le 0, i=1,\cdots ,n \}. \end{aligned}$$

For \(0<\varepsilon <1\), let \(f_1(x)=|x|^{\varepsilon -n}\chi ^{}_V(x)\), \(f_2(x)=|x|^{\frac{\varepsilon -n}{p_2}}\chi ^{}_V(x)\), \(w_1(x)=|x|^{(n-\varepsilon )(p_1-1)}\) and \(w_2(x)=1\). For \(x\in U\) and \(y_j\in V\) with \(|y_j|\le |x|\), we have

$$\begin{aligned} \frac{\sum _{j=1}^2(x_1-(y_j)_1)}{(\sum _{j=1}^2|x-y_j|^2)^{1/2}} \ge \frac{2\frac{|x|}{\sqrt{n}}}{4|x|}\gtrsim 1. \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{\sum _{j=1}^2(x_1-(y_j)_1)}{(\sum _{j=1}^2|x-y_j|^2)^{(2n+1)/2}}\gtrsim \frac{1}{|x|^{2n}}. \end{aligned}$$

It follows that

$$\begin{aligned} R_1(\vec {f})(x)&= p.v.\int \limits _{(\mathbb {R}^n)^2}\frac{\sum _{j=1}^2(x_i-(y_j)_i)}{(\sum _{j=1}^2|x-y_j|^2)^{(2n+1)/2}}f_1(y_1) f_2(y_2)dy_1dy_2\\&\gtrsim \int \limits _{|y_1|\le |x|}\int \limits _{|y_2|\le |x|}\frac{1}{|x|^{2n}} |y_1|^{\varepsilon -n}\cdot |y_2|^{\frac{\varepsilon -n}{p_2}}dy_1dy_2\\&\gtrsim \frac{1}{\varepsilon }f_1(x)f_2(x). \end{aligned}$$

Hence

$$\begin{aligned} \Vert R_1(\vec {f})\Vert _{L^p(v_{\vec {w}})}&\gtrsim \frac{1}{\varepsilon }\left( \int \limits _U |x|^{(\varepsilon -n)(p+p/{p_2}-p/{p_1'})}dx\right) ^{1/p}\\&= \frac{1}{\varepsilon }\left( \int \limits _U |x|^{\varepsilon -n}dx\right) ^{1/p}\\&\gtrsim \frac{1}{\varepsilon }\left( \int \limits _{\{|x|\le 1\}} |x|^{\varepsilon -n}dx\right) ^{1/p}\quad \text{(by } \text{ symmetry) }\\&\gtrsim (\frac{1}{\varepsilon })^{1+1/p}. \end{aligned}$$

Then by similar arguments as the above we can show that the exponent is sharp when \(\max ( p_1',p_2')\ge p\ge 1\). When \(p>\max (p_1',p_2')\). Again, suppose that \(p_1'\ge p_2'\). We consider the adjoint in the first variable, \((R_1)^{1,*}\). Notice that

$$\begin{aligned} (R_1)^{1,*}(f_1,f_2)(x)=\int \limits _{(\mathbb {R}^n)^2}\frac{2(y_1)_1-x_1-(y_2)_1}{(|x-y_1|^2+|y_1-y_2|^2)^{(2n+1)/2}} f(y_1)f(y_2)dy_1dy_2. \end{aligned}$$

Let

$$\begin{aligned} U_1&= \{x\in \mathbb {R}^n: |x|\le 1,x_1\le x_i< 0 ,i=2,\cdots ,n\}, \\ V_1&= \{x\in \mathbb {R}^n:\, |x|\le 1, x_i\ge 0, i=1,\cdots ,n \}. \end{aligned}$$

For \(0<\varepsilon <1\), let \(f_1(x)=|x|^{\varepsilon -n}\chi ^{}_{V_1}(x)\), \(f_2(x)=|x|^{\frac{\varepsilon -n}{p_2}}\chi ^{}_{V}(x)\), \(w_1(x)=|x|^{(\varepsilon -n)p_1/p}\) and \(w_2(x)=1\). Then \(v_{\vec {w}}(x)=|x|^{\varepsilon -n}\), \(v_{\vec {w}}^{1-p'}=|x|^{(n-\varepsilon )(p'-1)}\) and \(w_1^{1-p_1'}=|x|^{(n-\varepsilon )p_1'/p}\). Similar arguments as the above show that

$$\begin{aligned} \Vert (R_1)^{1,*}\Vert _{L^{p'}(v_{\vec w}^{1-p'})\times L^{p_2}(w_2)\rightarrow L^{p_1'}(w_1^{1-p_1'})} \gtrsim \frac{1}{\varepsilon }=[\vec {w}^1]_{A_{\vec {P}^1}}^{p/{p_1'}}=[\vec {w}]_{A_{\vec {P}}}. \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert R_1 \Vert _{L^{p_1}(w_1)\times L^{p_2}(w_2)\rightarrow L^p(v_{\vec {w}})}=\Vert (R_1)^{1,*}\Vert _{L^{p'}(v_{\vec w}^{1-p'})\times L^{p_2}(w_2)\rightarrow L^{p_1'}(w_1^{1-p_1'})}\gtrsim [\vec {w}]_{A_{\vec {P}}}. \end{aligned}$$

This shows the sharpness of the exponent when \(p>\max _i \{p_i'\}\), which completes the proof.