Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 113))

Abstract

We examine the performance of hybrid (HF-DFT) exchange functionals within Density Functional Theory (DFT) in describing the properties of crystalline solids. Recent applications are reviewed, and an extensive set of new results presented on transition metal compounds.

The features of the electronic density and of several calculated properties are examined as the weight of the HF (exact) exchange in the hybrid functional is increased. Clear trends emerge in the structural and electronic properties; in particular, HF exchange increases the electronic localisation. This features causes an increase in the ionicity of the materials, a systematic decrease of the lattice parameter and increase of the elastic constants and bulk moduli. When HF and standard (LDA or GGA) DFT solutions yield systematically results with opposite sign with respect to experiment, the formulation of hybrid functionals improves the accuracy of the calculations. This is the case for band gaps, phonon spectra, magnetic coupling constants, and all properties that depend on the extent of electronic localisation at either perfect or defective lattice sites. A different weight of HF exchange is required to reproduce the experimental value of different observables; as a general rule, however, a higher fraction of HF exchange than the 20% optimised in the molecular B3LYP formulation is required in the solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Catlow CRA (1997) (ed) Computer modelling in inorganic crystallography. Academic Press, London

    Google Scholar 

  2. Fock V (1930) Z Phys 61:126

    Google Scholar 

  3. Slater JC (1930) Phys Rev 35:210

    Google Scholar 

  4. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York

    Google Scholar 

  5. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Google Scholar 

  6. Kohn W, Sham L (1965) Phys Rev A 140:1133

    Google Scholar 

  7. Dreizler RM, Gross EKU (1990) Density functional theory. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Cohen AJ, Handy NC (2000) Chem Phys Lett 316:160

    Google Scholar 

  9. Fulde P (2002) Adv Phys 51:909

    Google Scholar 

  10. Dirac PAM (1930) Proc Cambridge Phil Soc 26:376

    Google Scholar 

  11. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Google Scholar 

  12. Jones RO, Gunnarsson O (1985) Phys Rev Lett 55:107

    Google Scholar 

  13. Becke AD (1988) Phys Rev A 38:3098

    Google Scholar 

  14. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Google Scholar 

  15. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264

    Google Scholar 

  16. Perdew JP (1986) Phys Rev B 33:8800

    Google Scholar 

  17. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Google Scholar 

  18. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Google Scholar 

  19. Perdew JP, Kurth S, Zupan A, Blaha P (1999) Phys Rev Lett 82:2544

    Google Scholar 

  20. Van Voorhis T, Scuseria GE (1998) J Chem Phys 109:400

    Google Scholar 

  21. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Google Scholar 

  22. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689

    Google Scholar 

  23. Krieger JB, Li Y, Iafrate GJ (1992) Phys Rev A 45:101

    Google Scholar 

  24. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943

    Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:1372

    Google Scholar 

  26. Becke AD (1993) J Chem Phys 98:5648

    Google Scholar 

  27. Adamo C, Barone V (1997) Chem Phys Lett 274:242

    Google Scholar 

  28. Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982

    Google Scholar 

  29. Frisch MJ, Trucks GW, Schelgel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith TA, Pettersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrevski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JJP, Head-Gordon M, Gonzalez C, Pople JA (1995) Gaussian94 (Revision A.I), Gaussian Inc, Pittsburgh PA

    Google Scholar 

  30. Saunders VR, Dovesi R, Roetti C, Causà M, Harrison NM, Orlando R, Zicovich-Wilson CM (1998) CRYSTAL98 User’s manual. University of Torino, Torino

    Google Scholar 

  31. Kung HH (1989) Transition metal oxides: surface chemistry and catalysis. Studies in Surface Science and Catalysis, vol 45. Elsevier, Amsterdam

    Google Scholar 

  32. Newnham RE (1997) MRS Bull XXII(5):20

    Google Scholar 

  33. Busch-Vishniac IJ (1998) Phys Today July 1998:28

    Google Scholar 

  34. Owen JR (1997) Chem Soc Rev 26:147

    Google Scholar 

  35. Green M (1996) Chem Ind 17:641

    Google Scholar 

  36. Mortimer RJ (1997) Chem Soc Rev 26:147

    Google Scholar 

  37. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

    Google Scholar 

  38. Hedin L (1965) Phys Rev 136:A796; Hybertsen MS, Louie SG (1985) Phys Rev Lett 55:1418

    Google Scholar 

  39. Foulkes WMC, Mitas L, Needs RJ, Rajagopal G (2001) Rev Mod Phys 73:33

    Google Scholar 

  40. Muscat J, Wander A, Harrison NM (2001) Chem Phys Lett 342:397

    Google Scholar 

  41. Wilson N, Muscat J (2002) Molec Simul 28:903

    Google Scholar 

  42. Mallia G, Orlando R, Llunell M, Dovesi R (2003) In: Catlow CRA, Kotomin EA (eds) Computational materials science. NATO Science Series III, vol 187, IOS Press, Amsterdam, pp 102–121

    Google Scholar 

  43. Damin A, Dovesi R, Zecchina A, Ugliengo P (2001) Surf Sci 479:253

    Google Scholar 

  44. Ugliengo P, Damin A (2002) Chem Phys Lett 366:683

    Google Scholar 

  45. Alfredsson M (1999) Thesis, Acta Universitatis Upsaliensis. Uppsala, Sweden

    Google Scholar 

  46. Baranek P, Lichanot A, Orlando R, Dovesi R (2001) Chem Phys Lett 240:362

    Google Scholar 

  47. Mérawa M, Civalleri B, Ugliengo P, Noël Y, Lichanot A (2003) J Chem Phys 119:1045

    Google Scholar 

  48. Gomes JRB, Moreira I de PR, Reinhardt P, Wander A, Searle BG, Harrison NM, Illas F (2001) Chem Phys Lett 341:412

    Google Scholar 

  49. Corà F, Catlow CRA (2001) J Phys Chem 105:10278

    Google Scholar 

  50. Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner TS, Thornton G, Harrison NM (2001) Phys Rev Lett 86:3811

    Google Scholar 

  51. Wander A, Harrison NM (2000) Surf Sci 457:L342

    Google Scholar 

  52. Wander A, Harrison NM (2000) Surf Sci 468:L851

    Google Scholar 

  53. Muscat J, Gale JD (2003) Geochim Cosmochim Acta 67:799

    Google Scholar 

  54. Muscat J, Klauber C (2001) Surf Sci 491:226

    Google Scholar 

  55. Ugliengo P, Civalleri B, Zicovich-Wilson CM, Dovesi R (2000) Chem Phys Lett 318:247

    Google Scholar 

  56. Ugliengo P, Civalleri B, Dovesi R, Zicovich-Wilson CM (1999) Phys Chem Chem Phys 1:545

    Google Scholar 

  57. Pascale F, Ugliengo P, Civalleri B, D’Arco P, Dovesi R (2002) J Chem Phys 117:5337

    Google Scholar 

  58. Baranek P, Dovesi R (2002) Ferroelectrics 268:155

    Google Scholar 

  59. Heifets E, Eglitis RI, Kotomin EA, Maier J, Borstel G (2001) Phys Rev B 64:235417

    Google Scholar 

  60. Bredow T, Gerson AR (2000) Phys Rev B 61:5194

    Google Scholar 

  61. Moreira I de PR, Illas F, Martin RL (2002) Phys Rev B 65:155102

    Google Scholar 

  62. Muscat J, Hung A, Russo S, Yarovsky I (2002) Phys Rev B 65:054107

    Google Scholar 

  63. Perry JK, Tahir-Kheli J, Goddard WA (2001) Phys Rev B 63:144510

    Google Scholar 

  64. Mackrodt WC, Middlemiss DS, Owens TG (2004) Phys Rev B 69:115119

    Google Scholar 

  65. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Google Scholar 

  66. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Google Scholar 

  67. Marques MA, Castro A, Rubio A (2001) J Chem Phys 115:3006

    Google Scholar 

  68. Gilli G, Gilli P (2000) J Mol Struct 552:1

    Google Scholar 

  69. Sandor E, Farrow RFO (1967) Nature 14:171

    Google Scholar 

  70. Bushbeck K-C (ed) (1968) Gmelins handbuch der anorganischen chemie; Chlor 6(1):90–92, 8th edn. Verlage Chemie, GMBH, Weinhem/Bergst, Germany

    Google Scholar 

  71. Aoki K, Katoh E, Yamawaki H, Sakashita M, Fujihisa H (1999) Physica B 265:83

    Google Scholar 

  72. Vinogradov SN, Linnell RH (1971) Hydrogen bonding. van Nostrand Reinhold Company, New York, p 55

    Google Scholar 

  73. Corà F, Catlow CRA (1999) Faraday Discuss 114:421

    Google Scholar 

  74. Corà F, Catlow CRA (2000) In: Bortsel G (ed) Defects and surface-induced effects in advanced perovskites. Kluwer Academic Publishers, The Netherlands, p 175

    Google Scholar 

  75. Cohen RE (1992) Nature 358:136

    Google Scholar 

  76. Abrahams SC, Keve ET (1971) Ferroelectrics 2:129

    Google Scholar 

  77. Martin RL, Illas F (1997) Phys Rev Lett 79:1539

    Google Scholar 

  78. Illas F, Martin RL (1998) J Chem Phys 108:2519

    Google Scholar 

  79. de Graaf C, Illas F, Broer R, Nieuwpoort WC (1997) J Chem Phys 106:3287

    Google Scholar 

  80. de Jongh LJ, Block R (1975) Physica 79B:568

    Google Scholar 

  81. Hoffmann R (1963) J Chem Phys 39:1397

    Google Scholar 

  82. Hoffmann R, Lipscomb WN (1962) J Chem Phys 36:2179; 37:2872

    Google Scholar 

  83. Burdett KJ (1995) Chemical bonding in solids. Oxford University Press, New York

    Google Scholar 

  84. Wheeler RA, Whangbo M-H, Hughbanks T, Hoffman R, Burdett JK, Albright TA (1986) J Am Chem Soc 108:2222

    Google Scholar 

  85. Finnis MW, Paxton AT, Methfessel M, von Schilfgaarde M (1998) Phys Rev Lett 81:5149

    Google Scholar 

  86. Fabris S, Paxton AT, Finnis MW (2000) Phys Rev B 61:6617

    Google Scholar 

  87. Resta R (2003) Modell Simul Mater Sci Eng 11:R69

    Google Scholar 

  88. Ashcroft N, Mermin N (1976) Solid state physics. WB Saunders and Co., Philadelphia

    Google Scholar 

  89. Kanamori J (1959) J Phys Chem Solids 10:87

    Google Scholar 

  90. Griffith JS (1964) The theory of transition metal ions. Cambridge University Press, Cambridge

    Google Scholar 

  91. Saunders VR, Dovesi R, Roetti C, Orlando R, Zicovich-Wilson CM, Harrison NM, Doll K, Civalleri B, Bush I, D’Arco P, Llunell M (2003) CRYSTAL2003 User’s manual, University of Torino, Torino

    Google Scholar 

  92. www.crystal.unito.it/Basis_Sets/ptable.html

    Google Scholar 

  93. Pisani C, Dovesi R, Roetti C (1988) Hartree Fock ab initio treatment of crystalline systems, vol 48. Lecture notes in chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  94. Pisani C (ed) (1996) Quantum mechanical ab initio calculation of the properties of crystalline materials, vol 67. Lecture notes in chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  95. Birch F (1978) J Geophys Res 83:1257

    Google Scholar 

  96. Murnaghan FD (1944) Proc Nat Acad Sciences 30:244

    Google Scholar 

  97. Zhong W, King-Smith RD, Vanderbild D (1994) Phys Rev Lett 72:3618

    Google Scholar 

  98. Dovesi R, Roetti C, Freyria Fava C, Aprà E, Saunders VR, Harrison NM (1992) Phyl Trans R Soc A341:203

    Google Scholar 

  99. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, Oxford

    Google Scholar 

  100. Kwei GH, Lawson AC, Billinge SJL, Cheong S-W (1993) J Phys Chem 97:2368

    Google Scholar 

  101. Frenkel AI, Wang FM, Kelly S, Ingalls R, Haskel D, Stern EA (1997) Phys Rev B 56:10869

    Google Scholar 

  102. Wieder HH (1955) Phys Rev 99:1161

    Google Scholar 

  103. Hewat AW (1973) J Phys C 6:1074

    Google Scholar 

  104. Kleemann W, Schäfer FJ, Fontana MD (1984) Phys Rev B 30:1148

    Google Scholar 

  105. Madelung O (1982) Landolt-Börnstein New Series. Springer, Berlin Heidelberg New York

    Google Scholar 

  106. Dovesi R, Freyria Fava F, Roetti C, Saunders VR (1997) Faraday Discuss 106:173

    Google Scholar 

  107. Brandow BH (1977) Adv Phys 26:651

    Google Scholar 

  108. Powell RJ, Spicer WE (1970) Phys Rev B 2:2182

    Google Scholar 

  109. Terakura K, Oguchi T, Williams AR, Kluber J (1984) Phys Rev B 30:4734

    Google Scholar 

  110. Leung TC, Chan CT, Harmon BN (1991) Phys Rev B 44:2923

    Google Scholar 

  111. Szotek Z, Temmerman WM, Winter H (1993) Phys Rev B 47:4029

    Google Scholar 

  112. Zaanen J, Sawatzky GA, Allen JW (1985) Phys Rev Lett 55:418

    Google Scholar 

  113. Towler MD, Allan NL, Harrison NM, Saunders VR, Mackrodt WC, Aprà E (1994) Phys Rev B 50:5041

    Google Scholar 

  114. Fang Z, Solovyev IV, Sawada H, Terakura K (1999) Phys Rev B 59:762

    Google Scholar 

  115. Pask JE, Singh DJ, Mazin II, Hellberg CS, Kortus J (2001) Phys Rev B 64:024403

    Google Scholar 

  116. Bartel LC, Morosin B (1971) Phys Rev B 3:1039

    Google Scholar 

  117. Notis R, Spriggs RM, Hahn WC (1973) J Appl Phys 44:4165

    Google Scholar 

  118. DuPleiss PDV, Van Tonder SJ, Alberts L (1971) J Phys C 4:1983

    Google Scholar 

  119. Fender BEF, Jacobson AJ, Wedgewood FA (1968) J Chem Phys 48:990

    Google Scholar 

  120. Alperin HA (1962) J Phys Soc Jpn Suppl B 17:12

    Google Scholar 

  121. Cheetham AK, Hope DAO (1983) Phys Rev B 27:6964

    Google Scholar 

  122. Kondo K, Yagi T, Syono Y, Noguchi Y, Atou T, Kikegawa T, Shimomura O (2000) J App Phys 87:4153

    Google Scholar 

  123. Clendenen RL, Drickamer HG (1966) J Chem Phys 44:4223

    Google Scholar 

  124. Jeanloz R, Rudy A (1987) J Geophys Res 92:11433

    Google Scholar 

  125. Webb SL, Jackson I, FitzGerald JD (1988) Phys Earth Planet Int 52:117

    Google Scholar 

  126. Noguchi Y, Kusaba K, Fukuokaand K, Syono Y (1996) Geophys Res Lett 23:1469

    Google Scholar 

  127. Shaked H, Faber J Jr, Hitterman RL (1988) Phys Rev B 38:11901

    Google Scholar 

  128. Cox PA (1995) Transition metal oxides. Clarendon Press, Oxford

    Google Scholar 

  129. Lines ME, Jones ED (1965) Phys Rev 139:A1313

    Google Scholar 

  130. Kohgi M, Ishikawa Y, Endoh Y (1972) Solid State Commun 11:391

    Google Scholar 

  131. Pepy G (1974) J Phys Chem Solids 35:433

    Google Scholar 

  132. Hutchings MT, Samuelsen EJ (1972) Phys Rev B 6:3447

    Google Scholar 

  133. Shanker R, Singh RA (1973) Phys Rev B 7:5000

    Google Scholar 

  134. Hufner S, Steiner P, Reinert F, Schmitt H, Sandl P (1992) Z Phys B 88:247; Newman R, Chrenko R (1959) Phys Rev 114:1507; Propach V, Reinen D, Drenkhaln H, Muller Buschbaum H (1978) Z Naturforsch 33b:619; Cox PA, Williams AA (1985) Surf Sci 152:791; Freitag A, Staemmler V, Cappus D, Ventrice CA, Al Shamery K, Kuhlenbeck H, Freund H-J (1993) Chem Phys Lett 210:10; Fromme B, Schmitt M, Kisker E, Gorschluter A, Merz H (1994) Phys Rev B 50:1874

    Google Scholar 

  135. Shukla A, Rueff J-P, Badro J, Vanko G, Mattila A, de Groot FMF, Sette F (2003) Phys Rev B 67:081101

    Google Scholar 

  136. Sugano S, Tanabe Y, Kamimura H (1970) Multiplets of transition-metal ions in crystals. Academic Press, New York

    Google Scholar 

  137. Mackrodt WC, Noguera C (2000) Surf Sci Lett 457:L386

    Google Scholar 

  138. Schirmer OF (1971) J Phys Chem Solids 32:499

    Google Scholar 

  139. Rius G, Cox R, Picard R, Santier C (1970) C R Acad Sci Paris 271:824

    Google Scholar 

  140. Abraham MM, Unruh WP, Chen Y (1974) Phys Rev B 10:3540; Chen Y, Abraham MM (1990) J Phys Chem Solids 51:747

    Google Scholar 

  141. Henderson B (1976) J Phys C 9:579

    Google Scholar 

  142. Rius G, Hervé A (1974) Solid State Commun 15:399

    Google Scholar 

Download references

Acknowledgements

We would like to thank the CRYSTAL group, in both Torino and Daresbury, for valuable discussions throughout the years; in particular we thank Carla Roetti, Vic Saunders and Nic Harrison; we would also like to thank Mike Finnis and Tony Paxton for making available their Tight-Binding code. FC acknowledges EPSRC for an advanced research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furio Corà .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Corà, F. et al. (2004). The Performance of Hybrid Density Functionals in Solid State Chemistry. In: Principles and Applications of Density Functional Theory in Inorganic Chemistry II. Structure and Bonding, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b97944

Download citation

  • DOI: https://doi.org/10.1007/b97944

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21861-6

  • Online ISBN: 978-3-540-40966-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics