Skip to main content

Restricted simplicial decomposition: Computation and extensions

  • Chapter
  • First Online:
Computation Mathematical Programming

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 31))

Abstract

Restricted simplicial decomposition (RSD) is a very useful technique for certain large-scale pseudoconvex programming problems such as the traffic assignment problem and other network flow problems. The “restricted” version of this method allows the user to treat the maximum size of the generated simplices as a parameter. When the parameter is at its minimum value, the method reduces to the Frank-Wolfe algorithm; when at its maximum, the original simplicial decomposition of von Hohenbalken and Holloway results. Computer storage requirements increase linearly with the parameter, but our computational experiments on a variety of test problems show that there is a payoff in improved progress of the method as measured by the relative error in the objective function. Included in the tests are a number of real-world traffic networks, some large electrical networks, a water distribution network, and linearly constrained problems of the Colville study.

Conditions are given for which RSD converges after a finite number of major cycles, and variations of RSD which have potential for real-world applications are developed. These include a quadratic approximation of the master problem and an extension to include the case of unbounded subproblems.

This research was supported in part by NSF Grants ECE-8420830 and ECS-8516365.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • I. Balberg and N. Binnebaum, “Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks,” PHYSICAL REVIEW B 28 (1983) 3799–3812.

    Article  Google Scholar 

  • I. Balberg, N. Binnebaum and C.H. Anderson, “Critical behavior of the two-dimensional sticks system,” Physical Review Letters 51 (1983) 1605–1608.

    Article  Google Scholar 

  • M.S. Bazaraa and C.M. Shetty, Nonlinear Programming (John Wiley and Sons, NY, 1979).

    MATH  Google Scholar 

  • P. Beck, L. Lasdon and M. Engquist, “A reduced gradient algorithm for nonlinear network problems,” ACM Transaction on Mathematical Software 9 (1983) 57–70.

    Article  MATH  MathSciNet  Google Scholar 

  • D.P. Bertsekas, “Algorithms for nonlinear multicommodity network flow problems,” in: Benseussan and Lions, eds., International Symposium on Systems Optimization and Analysis (Springer-Verlag, NY, 1979) pp. 210–224.

    Chapter  Google Scholar 

  • D.P. Bertsekas, “Projected Newton methods for optimization problems with simple constraints,” SIAM Journal of Control and Optimization 20 (1982) 221–246.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Bradley, G. Brown, G. Graves, “Design and implementation of large scale primal transshipment algorithms,” Management Science 24 (1977) 1–35.

    Article  MATH  Google Scholar 

  • D.G. Cantor and M. Gerla, “Optimal routing in a packet-switched computer network,” IEEE Transaction on Computers C-23 (1974) 1062–1069.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Collins, L. Cooper, R. Helgason, J. Kennington and L. LeBlanc, “Solving the pipe network analysis problem using optimization techniques,” Management Science 24 (1978) 747–760.

    Article  MATH  MathSciNet  Google Scholar 

  • A.R. Colville, “A comparative study on nonlinear programming codes,” Technical Report No. 320-2949, IBM-Data Processing Division, New York Scientific Center (New York, NY, 1968).

    Google Scholar 

  • L. Cooper and J. Kennington, “Steady state analysis of nonlinear resistive electrical networks using optimization techniques,” Technical Report, IEOR 77012, Southern methodist University (Dallas, Texas, 1977).

    Google Scholar 

  • R.S. Dembo and J.G. Klincewicz, “A scaled reduced gradient algorithm for network flow problems with convex separable costs,” Mathematical Programming Study 15 (1981) 124–147.

    MathSciNet  Google Scholar 

  • R.S. Dembo and U. Tulowitzki, “Computing equilibria on large multicommodity networks; an application of truncated quadratic programming algorithms,” SOM working Paper Series B #65, School of Organization and Management, Yale University (New Haven, Connecticut, 1983).

    Google Scholar 

  • M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval Research Logistics Quarterly 3 (1956) 95–110.

    Article  MathSciNet  Google Scholar 

  • A.M. Geoffrion, “Elements of large-scale mathematical programming,” Management Science 16 (1970) 652–691.

    Article  MathSciNet  Google Scholar 

  • P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, “User’s guide for SOL/NPSOL: A Fortran package for nonlinear programming,” Report SOL 83-12, Department of Operations Research, Stanford University (California, 1983).

    Google Scholar 

  • M.D. Grigoriadis and T. Hsu, “RNET: The Rutgers minimum cost network flow subroutine,” SIGMAP Bulletin (1979) 17–18.

    Google Scholar 

  • J. Guélat, “Algorithmes pour le probleme d’affectation du traffic d’equilibre avec demandes fixes: Comparasons,” Publication 299, Centre de Recherche sur les Transports, Universite de Montreal (Montreal, 1983).

    Google Scholar 

  • D.W. Hearn, “The gap function of a convex program,” Operations Research Letters 1 (1982) 67–71.

    Article  MATH  MathSciNet  Google Scholar 

  • D.W. Hearn, S. Lawphongpanich and J.A. Ventura, “Finiteness in restricted simplicial decomposition,” Operations Research Letters 4 (1985) 125–130.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Held, P. Wolfe and H. Crowder, “Validation of subgradient optimization,” Mathematical Programming 6 (1974) 62–88.

    Article  MATH  MathSciNet  Google Scholar 

  • D.M. Himmelblau, Applied Nonlinear Programming (McGraw-Hill, New York, 1972).

    MATH  Google Scholar 

  • C.A. Holloway, “An extension of the Frank-Wolfe method of feasible directions,” Mathematical Programming 6 (1974) 14–27.

    Article  MATH  MathSciNet  Google Scholar 

  • P.V. Kamesam and R.R. Meyer, “Multipoint methods for nonlinear networks,” Computer Sciences Technical Report #468, Computer Sciences Department, University of Wisconsin (Madison, Wisconsin, 1982).

    Google Scholar 

  • J.L. Kennington, private communication (1984).

    Google Scholar 

  • J.L. Kennington and R.V. Helgason, Algorithms for Network Programming (John Wiley and Sons, New York, 1980).

    MATH  Google Scholar 

  • J.G. klincewicz, “A Newton method for convex separable network flow problems,” Networks 13 (1983). 427–442.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Lawphongpanich and D.W. Hearn, “Restricted simplicial decomposition with application to the traffic assignment problem,” Research Report No. 83-8, University of Florida (Gainesville, Florida, 1983).

    Google Scholar 

  • E.S. Levitin and B.T. Polyak, “Constrained minimization problems,” USSR Computational mathematics and Mathematical Physics 6 (1966) 1–50.

    Article  Google Scholar 

  • S. Nguyen, “A unified approach to equilibrium methods for traffic assignment,” in: M.A. Florian, ed., Traffic Equilibrium Methods (Springer-Verlag, New York, 1976), pp. 148–182.

    Google Scholar 

  • S. Nguyen and C. Dupuis, “An efficient method for computing traffic equilibria in a network with asymmetric transportation costs,” Transportation Science 18 (1984) 185–202.

    Article  Google Scholar 

  • S. Nguyen and L. James, “TRAFFIC—An equilbrium traffic assignment program,” Report 17, Centre de Recherche sur les Transport, Universite de Montreal (Montreal, 1975).

    Google Scholar 

  • R.T. Rockafellar, Convex analysis (Princeton University Press, NJ, 1970).

    MATH  Google Scholar 

  • K. Schittkowski, “NLPQL: A FORTRAN subroutine for solving constrained nonlinear programming problems,” Report, Institut für Informatik, Universität Stuttgart (Stuttgart, Germany, 1984).

    Google Scholar 

  • P.A. Steenbrink, Optimization of Transport Networks (John Wiley and Sons, NY, 1974).

    Google Scholar 

  • M.M. Syslo, N. Deo and J.S. Kowalik, Discrete Optimization Algorithms with Pascal Programs (Prentice-Hall, NJ, 1983).

    MATH  Google Scholar 

  • J.A. Ventura and D.W. Hearn, “Computing the effective resistance in a system of conducting sticks,” Research Report No. 84-43, University of Florida (Gainesville, Florida, 1984).

    Google Scholar 

  • B. Von Hohenbalken, “A finite algorithm to maximize certain pseudoconcave functions on polytopes,” Mathematical Programming 8 (1975) 189–206.

    Article  Google Scholar 

  • B. Von Hohenbalken, “Simplicial decomposition in nonlinear programming algorithms,” Mathematical Programming 13 (1977) 49–68.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Wolfe, “Convergence theory in nonlinear programming,” in: J. Abadie, ed., Integer and Nonlinear Programming (North-Holland, New York, 1970) pp. 1–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. L. Hoffman R. H. F. Jackson J. Telgen

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Hearn, D.W., Lawphongpanich, S., Ventura, J. (1987). Restricted simplicial decomposition: Computation and extensions. In: Hoffman, K.L., Jackson, R.H.F., Telgen, J. (eds) Computation Mathematical Programming. Mathematical Programming Studies, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121181

Download citation

  • DOI: https://doi.org/10.1007/BFb0121181

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00932-7

  • Online ISBN: 978-3-642-00933-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics