Skip to main content

Nested high-resolution modelling of the greenland summit region

  • Large Ice Masses: Ice Sheets, Sea Ice
  • Conference paper
  • First Online:
Advances in Cold-Region Thermal Engineering and Sciences

Part of the book series: Lecture Notes in Physics ((LNP,volume 533))

Abstract

The dynamics and thermodynamics of the vicinity of Summit, the highest point of the Greenland ice sheet at 72° 34′N, 37° 38′W, is simulated over two climate cycles until the present with a high-resolution regional model coupled to a large-scale model of the entire Greenland ice sheet. For the computation of the age of ice, two different methods are applied, an Eulerian scheme which solves the advective age equation in a frame fixed in space and requires some artificial diffusion, and a Lagrangian particle-tracing scheme which follows the motion of ice particles and is diffusion-free. The transient simulation is based on the shallow-ice approximation which neglects normal stress deviators and shear stresses in vertical planes. For the simulated modern ice sheet, the velocity and stress fields are then re-computed in the Summit region by a first-order algorithm which includes these stresses. The measured ice topography as well as the temperature profiles of the boreholes GRIP and GISP2 are reproduced very well. The simulated Summit motion of 16 ice thicknesses during the last 250,000 years gives a clue for understanding the origin of irregularities observed in the GRIP and GISP2 cores. In a 50 km region around Summit, all stresses are of the same order of magnitude, so that a very precise modelling of the ice dynamics, which is necessary for an accurate ice-core dating, requires that the shallow-ice approximation be locally abandoned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, O. (1999) Dynamics of glaciers and ice sheets: a numerical model study. Ph.D. thesis in preparation, Geographisches Institut, Eidgenössische Technische Hochschule Zürich, Switzerland.

    Google Scholar 

  2. Alley, R. B., A. J. Gow, S. J. Johnsen, J. Kipfstuhl, D. A. Meese and T. Thorsteinsson (1995) Comparison of deep ice cores. Nature, 373, 393–394.

    Article  ADS  Google Scholar 

  3. Baral, D. R. (1999) Asymptotic theories of large-scale motion, temperature and moisture distributions in land-based polythermal ice shields and in floating ice shelves — A critical review and new developments. Ph.D. thesis in preparation, Institut für Mechanik, Technische Universität Darmstadt, Germany.

    Google Scholar 

  4. Blatter, H. (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41 (138), 333–344.

    ADS  Google Scholar 

  5. Bolzan, J. F. and M. Strobel (1994) Accumulation-rate variations around Summit, Greenland. J. Glaciol., 40 (134), 56–66.

    ADS  Google Scholar 

  6. Calov, R., A. Savvin, R. Greve, I. Hansen and K. Hutter (1998) Simulation of the Antarctic ice sheet with a three-dimensional polythermal ice-sheet model, in support of the EPICA project. Ann. Glaciol., 27, 201–206.

    ADS  Google Scholar 

  7. Cuffey, K. M., G. D. Clow, R. B. Alley, M. Stuiver, E. D. Waddington and R. W. Saltus (1995) Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science, 270, 455–458.

    Article  ADS  Google Scholar 

  8. Dansgaard, W. and S. J. Johnsen (1969) A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciol., 8 (53), 215–223.

    ADS  Google Scholar 

  9. Dansgaard, W., S. J. Johnsen, H. B. Clausen, D. Dahl-Jensen, N. S. Gundestrup, C. U. Hammer, C. S. Hvidberg, J. P. Steffensen, A. E. Sveinbjörnsdottir, J. Jouzel and G. Bond (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220.

    Article  ADS  Google Scholar 

  10. Fowler, A. C. and D. A. Larson (1978) On the flow of polythermal glaciers. I. Model and preliminary analysis. Proc. R. Soc. Lond., A 363, 217–242.

    Article  ADS  MathSciNet  Google Scholar 

  11. Glen, J. W. (1955) The creep of polycrystalline ice. Proc. R. Soc. Lond., A 228, 519–538.

    Article  ADS  Google Scholar 

  12. Greve, R. (1997a) A continuum-mechanical formulation for shallow polythermal ice sheets. Phil. Trans. R. Soc. Lond., A 355, 921–974.

    Article  ADS  MATH  Google Scholar 

  13. Greve, R. (1997b) Application of a polythermal three-dimensional ice sheet model to the Greenland Ice Sheet: Response to steady-state and transient climate scenarios. J. Climate, 10 (5), 901–918.

    Article  ADS  Google Scholar 

  14. Greve, R. (1997c) Large-scale ice-sheet modelling as a means of dating deep ice cores in Greenland J. Glaciol., 43, (144), 307–310; Erratum 43 (145), 597–600.

    ADS  Google Scholar 

  15. Greve, R., M. Weis and K. Hutter (1998) Palaeoclimatic evolution and present conditions of the Greenland Ice Sheet in the vicinity of Summit: An approach by large-scale modelling. Paleoclimates, 2 (2–3), 133–161.

    Google Scholar 

  16. Hodge, S. M., D. L. Wright, J. A. Bradley, R. W. Jacobel, N. Skou and B. Vaughan (1990) Determination of the surface and bed topography in Central Greenland. J. Glaciol., 36 (122), 17–30.

    ADS  Google Scholar 

  17. Hofmann, W. (1974) Die Internationale Glaziologische Grönland-Expedition EGIG. Z. Gletscherkd. Glazialgeol., 5, 217–224.

    Google Scholar 

  18. Hutter, K. (1982) A mathematical model of polythermal glaciers and ice sheets. J. Geophys. Astrophys. Fluid Dyn., 21, 201–224.

    Article  ADS  MATH  Google Scholar 

  19. Hutter, K. (1993) Thermo-mechanically coupled ice sheet response. Cold, polythermal, temperate. J. Glaciol., 39 (131), 65–86.

    ADS  Google Scholar 

  20. Huybrechts, P. (1994) The present evolution of the Greenland ice sheet: an assessment by modelling. Global Planet. Change, 9, 39–51.

    Article  ADS  Google Scholar 

  21. Johnsen, S. J., D. Dahl-Jensen, W. Dansgaard and N. Gundestrup (1995) Greenland palaeotemperatures derived from GRIP borehole temperature and ice core isotope profiles. Tellus, 47B, 624–629.

    Article  Google Scholar 

  22. Letréguilly, A., P. Huybrechts and N. Reeh (1991) Steady-state characteristics of the Greenland ice sheet under different climates. J. Glaciol. 37 (125), 149–157.

    ADS  Google Scholar 

  23. Meese, D., R. Alley, T. Gow, P. M., Grootes, P. Mayewski, M. Ram, K. Taylor, E. Waddington and G. Zielinski (1994) Preliminary depth-age scale of the GISP2 ice core. CRREL Special Report 94-1.

    Google Scholar 

  24. Mügge, B. (1998) Eisalterbeerchnung im antarktischen Eisschild mit einem Algorithmus zur Teilchenverfolgung. Diploma thesis, Institut für Mechanik, Technische Universität Darmstadt, Germany.

    Google Scholar 

  25. Nye, J. F. (1957) The distribution of stress and velocity in glaciers and ice sheets. Proc. R. Soc. Lond., A 239, 113–133.

    Article  ADS  MATH  Google Scholar 

  26. Ohmura, A. and N. Reeh (1991) New precipitation and accumulation maps for Greenland. J. Glaciol., 37, 140–148.

    ADS  Google Scholar 

  27. Paterson, W. S. B. (1994) The physics of glaciers. Third edition. Oxford etc., Pergamon Press, 480 pp.

    Google Scholar 

  28. Reeh, N. (1991) Parameterization of melt rate and surface temperature on the Greenland Ice Sheet. Polarforschung, 59 (3), 113–128.

    Google Scholar 

  29. Savvin, A. (1999) Grenzschichttheorie nichtlinearer Kriechströmungen und ihre Anwendung auf das EPICA-Vorhaben. Ph.D. thesis, Institut für Mechanik, Technische Universität Darmstadt, Germany.

    Google Scholar 

  30. Sowers, T., T. Bender, L. Labeyrie, D. Martinson, J. Jouzel, D. Raynaud, J. J. Pichon and Y. Korotkevich (1993) 135,000 year Vostok-SPECMAP common temporal framework. Paleoceanography, 8, 737–766.

    Article  ADS  Google Scholar 

  31. Wilhelms F. (1996) Leitfähigkeits-und Dichtemessung an Eisbohrkernen. Ber. Polarforschung, 191, 224 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kolumban Hutter Yongqi Wang Hans Beer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Greve, R., Mügge, B., Baral, D., Albrecht, O., Savvin, A. (1999). Nested high-resolution modelling of the greenland summit region. In: Hutter, K., Wang, Y., Beer, H. (eds) Advances in Cold-Region Thermal Engineering and Sciences. Lecture Notes in Physics, vol 533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104190

Download citation

  • DOI: https://doi.org/10.1007/BFb0104190

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66333-1

  • Online ISBN: 978-3-540-48410-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics