Skip to main content

Positive harmonic functions and hyperbolicity

  • Surveys
  • Conference paper
  • First Online:
Potential Theory Surveys and Problems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1344))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Aikawa, On the thinness in a Lipschitz domain, Analysis 5, 1985, 347–382.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Annals of Maths, 125, 1987, 495–536.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Ann. Inst. Fourier, XVIII, 4, 1978.

    MATH  Google Scholar 

  4. M. Anderson, R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Annals of Math., 121, 1985, 429–461.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Beurling, A minimum principle for positive harmonic functions, Ann. Acad. Sc. Fenn. Ser. AI 372, 1965, 3–7.

    MathSciNet  MATH  Google Scholar 

  6. B. Dahlberg, A minimum principle for positive harmonic functions, Proc. London Math. Soc., 33, 1976, 238–250.

    Article  MathSciNet  MATH  Google Scholar 

  7. N.M. Day, Convolution, mean and spectra, Illinois J. of Math., 8, 1964, 100–111.

    MATH  Google Scholar 

  8. Y. Deriennic, Y. Guivarc’h, Théorème de renouvellement pour les groupes non moyennables, C. R. Acad. Sc. Paris, t. 277, 1973, 613–615

    MATH  Google Scholar 

  9. F.P.Greanleaf, Invariant means on topological groups, Van Nostrand.

    Google Scholar 

  10. M.Gromov, Hyperbolic groups, Preprint, I.H.E.S.

    Google Scholar 

  11. H. Kesten, Full Banach mean values on countable groups, Math.Scand., 7,1959,146–156

    MathSciNet  MATH  Google Scholar 

  12. H. Kesten, Symmetric random walks on groups, Tr. Am Math. Soc, 92, 1959, 336–354.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Lelong-Ferrand, Etude au voisinage d’un point frontière des fonctions surharmoniques positives dans un demi-espace, Ann.Sc.Ec.Norm.Sup., 66, 1949, 125–159

    MathSciNet  MATH  Google Scholar 

  14. P.A. Meyer, Probabilités et Potentiel, Chapter 8, Hermann, Paris, 1966.

    Google Scholar 

  15. V.G. Maz’ja, On Beurling’s theorem for the minimum principle for positive harmonic functions, (in Russian), Zapiski Naucnyh Seminarov LOMI, 30, 1972, 76–90.

    MathSciNet  Google Scholar 

  16. P. Pansu, Quasi-isométries des variétés à courbure négative, Thèse, Univ. Paris 7, 1987

    Google Scholar 

  17. H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, 1974.

    Google Scholar 

  18. C. Series, Martin boundaries of random walks on Fuchsian groups, Israel J. Math., 44, no3, 1983, 221–242.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Sibony, Théorème de limites fines et problème de Dirichlet, Ann. Inst. Fourier, 18, 2, 1968, 121–134.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Sjögren, Une propriété des fonctions harmoniques positives d’après Dahlberg, Sem. Théorie du Potentiel 6, Springer L.N 563, 1975, 275–282.

    Google Scholar 

  21. N. T. Varopoulos, Brownian motion and random walks on manifolds, Ann. Inst. Fourier, 34,2, 1984,243–269.

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Yiping, Comparaison entre l’effilement interne et l’effilement minimal, C.R. Acad. Sci. Paris, 304, 1987, 5–8.

    MathSciNet  MATH  Google Scholar 

  23. Z.Yiping, Comparaison entre l’effilement interne et l’effilement minimal, Thèse, Orsay, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Josef Král Jaroslav Lukeš Ivan Netuka Jiří Veselý

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Ancona, A. (1988). Positive harmonic functions and hyperbolicity. In: Král, J., Lukeš, J., Netuka, I., Veselý, J. (eds) Potential Theory Surveys and Problems. Lecture Notes in Mathematics, vol 1344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103341

Download citation

  • DOI: https://doi.org/10.1007/BFb0103341

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50210-4

  • Online ISBN: 978-3-540-45952-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics