Skip to main content

Hereditary disorders of the urea cycle in man: Biochemical and molecular approaches

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 108

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 108))

Abstract

Since H.A. Krebs, many studies have been carried out on the urea cycle, its enzymes, and their deficiencies in man. This paper has reviewed biochemical and molecular research on this subject to date. By now, all of the urea cycle enzymes other than N-acetylglutamate synthetase have been purified to homogeneity from human liver and characterized in detail. Clones of cDNA for all the enzymes have been isolated. Primary amino acid sequences of OTC, ASS, and arginase have been deduced from their cDNA nucleotide sequences. RFLPs were found in the gene loci of CPS, OTC, and ASS.

These results may enable us to clarify the pathogenesis of urea cycle enzyme deficiencies at the molecular level, and may offer new therapeutic procedures, including gene therapy. Research on the organ-specific enzyme defects seen in citrullinemia, argininosuccinic aciduria, and probably argininemia may give us some insights into organ-specific gene expression in general.

On the other hand, the characterization of membrane transport proteins is still in the early stages. Purification of the membrane proteins may be necessary for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adcock MW, O'Brien WE (1984) Molecular cloning of cDNA for rat and human carbamyl phosphate synthetase I. J Biol Chem 259:13471–13476

    PubMed  Google Scholar 

  • Akaboshi I, Endo F, Matsuda I, Saheki T (1983) Kinetic analysis of argininosuccinate synthetase in a variant form of citrullinemia. J Inherited Metab Dis 6:36–39

    PubMed  Google Scholar 

  • Akaboshi I, Endo F, Hayashida S, Matsuda I (submitted) A case of argininosuccinic aciduria (in Japanese). J Jpn Pediatr Soc

    Google Scholar 

  • Allan JD, Cusworth DC, Dent CE, Wilson VK (1958) A disease, probably hereditary, characterised by severe mental deficiency and a constant gross abnormality of amino acid metabolism. Lancet i:182–187

    Article  Google Scholar 

  • Amaya Y, Kawamoto S, Oda T, Kusumi T, Saheki T, Kimura S, Mori M (1986) Molecular cloning of cDNA for argininosuccinate lyase of rat liver. Biochem Int 13:433–438

    PubMed  Google Scholar 

  • Arashima S, Matsuda I (1972) A case of carbamyl phosphate synthetase deficiency. Tohoku J Exp Med 107:143–147

    PubMed  Google Scholar 

  • Argan C, Shore GC (1985) The precursor to ornithine carbamoyltransferase is transported to mitochondria as a 5 S complex containing an import factor. Biochem Biophys Res Commun 131:289–298

    PubMed  Google Scholar 

  • Armstrong MD, Robinow M (1967) A case of hyperlysinemia: biochemical and clinical observations. Pediatrics 39:546–554

    PubMed  Google Scholar 

  • Bachmann C, Colombo JP (1980) Diagnostic value of orotic acid excretion in heritable disorders of the urea cycle and in hyperammonemia due to organic acidurias. Eur J Pediatr 134:109–113

    Article  PubMed  Google Scholar 

  • Bachmann C, Colombo JP (1983) Increased tryptophan uptake into the brain in hyperammonemia. Life Sci 33:2417–2424

    Article  PubMed  Google Scholar 

  • Bachmann C, Colombo JP (1984) Increase of tryptophan and 5-hydroxyindole acetic acid in the brain of ornithine carbamoyltransferase deficient sparse-fur mice. Pediatr Res 18:372–375

    PubMed  Google Scholar 

  • Bachmann C, Krahenbuhl S, Colombo JP, Schubiger G, Jaggi KH, Tonz O (1981) N-Acetylglutamate synthetase deficiency: a disorder of ammonia detoxication. N Engl J Med 304:543–544

    Google Scholar 

  • Bachmann C, Krahenbuhl S, Colombo JP (1982) Purification and properties of acetyl-CoA:L-glutamate N-acetyltransferase from human liver. Biochem J 205:123–127

    PubMed  Google Scholar 

  • Bascur L, Cabello J, Veliz M, Gonzalez A (1966) Molecular forms of human-liver arginase. Biochim Biophys Acta 128:149–154

    PubMed  Google Scholar 

  • Beaudet AL, O'Brien WE, Bock HGO, Freytag SO, Su TS (1986) The human arginino-succinate synthetase locus and citrullinemia. In: Harris H, Hirschhorn K (eds) Advances in human genetics vol 15. Plenum, New York, pp 161–196

    Google Scholar 

  • Bernar J, Hanson RA, Kern R, Phoenix B, Shaw KNF, Cederbaum SD (1986) Arginase deficiency in a 12-year-old boy with mild impairment of intellectual function. J Pediatr 108:432–435

    PubMed  Google Scholar 

  • Berüter J, Colombo JP, Bachmann C (1978) Purification and properties of arginase from human liver and erythrocytes. Biochem J 174:449–454

    Google Scholar 

  • Bock HGO, Su TS, O'Brien WE, Beaudet AL (1983) Sequence for human arginino-succinate synthetase cDNA. Nucleic Acids Res 11:6505–6512

    PubMed  Google Scholar 

  • Bradford NM, McGivan JD (1980) Evidence for the existence of an ornithine/citrulline antiporter in rat liver mitochondria. FEBS Lett 113:294–298

    Article  PubMed  Google Scholar 

  • Bray RC, Ratner S (1971) Argininosuccinase from bovine kidney: Comparison of catalytic, physical, and chemical properties with the enzyme from bovine liver. Arch Biochem Biophys 146:531–541

    Article  PubMed  Google Scholar 

  • Briand P, Cathelineau L, Kamoun P, Gigot D, Penninckx M (1981) Increase of ornithine transcarbamylase protein in sparse-fur mice with ornithine transcarbamylase deficiency. FEBS Lett 130:65–68

    Article  PubMed  Google Scholar 

  • Briand P, Francois B, Rabier D, Cathelineau L (1982) Ornithine transcarbamylase deficiencies in human males. Kinetic and immunochemical classification. Biochim Biophys Acta 704:100–106

    PubMed  Google Scholar 

  • Briand P, Miura S, Mori M, Cathelineau L, Kamoun P, Tatibana M (1983) Cell-free synthesis and transport of precursors of mutant ornithine carbamoyltransferases into mitochondria. Biochim Biophys Acta 760:389–397

    PubMed  Google Scholar 

  • Brusdeilins M, Kuhner R, Schumacher K (1985) Purification, affinity to anti-human arginase immunoglobulin-Sepharose 4B and subunit molecular weights of mammalian arginases. Biochim Biophys Acta 840:79–90

    PubMed  Google Scholar 

  • Bryla J, Harris EJ (1976) Accumulation of ornithine and citrulline in rat liver mitochondria in relation to citrulline formation. FEBS Lett 72:331–336

    Article  Google Scholar 

  • Buist NRM, Kennaway NG, Hepburn CA, Strandholm JJ, Ramberg DA (1974) Citrullinemia: investigation and treatment over a four-year period. J Pediatr 85:208–214

    PubMed  Google Scholar 

  • Carritt B (1977) Somatic cell genetic evidence for the presence of a gene for citrullinemia on human chromosome 9. Cytogenet Cell Genet 19:44–48

    PubMed  Google Scholar 

  • Carson NAJ, Scally BG, Neill DW, Carré IJ (1968) Saccharopinuria: a new inborn error of lysine metabolism. Nature 218:679

    PubMed  Google Scholar 

  • Carter AL, Eller AG, Rufo S, Metoki K, Hommes FA (1984) Further evidence for a separate enzymic entity for the synthesis of homocitrulline, distinct from the regular ornithine transcarbamylase. Enzyme 32:26–36

    PubMed  Google Scholar 

  • Carton D, De Schrijver F, Kint J, Van Durme J, Hooft C (1969) Case report. Argininosuccinic aciduria. Neonatal variant with rapid fatal course. Acta Paediatr Scand 58:528–534

    PubMed  Google Scholar 

  • Carvajal N, Cederbaum SD (1986) Kinetics of inhibition of rat liver and kidney arginases by proline and branched-chain amino acids. Biochim Biophys Acta 870:181–184

    PubMed  Google Scholar 

  • Carvajal N, Venegas A, Oestreicher G, Plaza M (1971) Effect of manganese on the quaternary structure of human liver arginase. Biochim Biophys Acta 250:437–442

    PubMed  Google Scholar 

  • Cathelineau L, Petit FP, Coude FX, Kamoun PP (1979) Effect of propionate and pyruvate on citrulline synthesis and ATP content in rat liver mitochondria. Biochem Biophys Res Commun 90:327–332

    Article  PubMed  Google Scholar 

  • Cathelineau L, Dinh DP, Boue J, Saudubray JM, Farriaux JP, Kamoun P (1981a) Improved method for the antenatal diagnosis of citrullinemia. Clin Chim Acta 116:111–115

    Article  PubMed  Google Scholar 

  • Cathelineau L, Dinh DP, Briand P, Kamoun P (1981b) Studies on complementation in argininosuccinate synthetase and argininosuccinate lyase deficiencies in human fibroblasts. Hum Genet 57:282–284

    Article  PubMed  Google Scholar 

  • Cederbaum SD, Shaw KNF, Dancis J, Hutzler J, Blaskovics JC (1979a) Hyperlysinemia with saccharopinuria due to combined lysine-ketoglutarate reductase and saccharopine dehydrogenase deficiencies presenting as cystinuria. J Pediatr 95:234–238

    PubMed  Google Scholar 

  • Cederbaum SD, Shaw KNF, Spector EB, Verity MA, Snodgrass PJ, Sugarman GI (1979b) Hyperargininemia with arginase deficiency. Pediatr Res 13:827–833

    PubMed  Google Scholar 

  • Chen PC, Broome JD (1980) Mouse macrophage arginase (40777). Proc Soc Exp Biol Med 163:354–359

    PubMed  Google Scholar 

  • Christensen E, Brandt NJ, Philip J, Kennaway NG (1980) Citrullinaemia: the possibility of prenatal diagnosis. J Inherited Metab Dis 3:73–75

    PubMed  Google Scholar 

  • Christensen E, Brandt NJ, Philip J, Bang J, (1985) Exclusion of citrullinaemia in the first trimester of pregnancy by direct assay of argininosuccinate synthetase in chorionic villi. Prenat Diagn 5:299–301

    PubMed  Google Scholar 

  • Conboy JG, Kalousek F, Rosenberg LE (1979) In vitro synthesis of a putative precursor of mitochondrial ornithine transcarbamylase. Proc Natl Acad Sci USA 76:5724–5727

    PubMed  Google Scholar 

  • Corredor C, Brendel K, Bressler R (1967) Studies on the mechanism of the hypoglycemic action of 4-pentenoic acid. Proc Natl Acad Sci USA 58:2299–2306

    PubMed  Google Scholar 

  • Coude FX, Sweetman L, Nyhan WL (1979) Inhibition by propionyl-Coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest 64:1544–1551

    PubMed  Google Scholar 

  • Coude FX, Ogier H, Marsac C, Munnich A, Charpentier C, Saudubray JM (1981) Secondary citrullinemia with hyperammonemia in four neonatal cases of pyruvate carboxylase deficiency. Pediatrics 68:914

    PubMed  Google Scholar 

  • Coude FX, Ogier H, Grimber G, Parvy Ph, Pham Dihn D, Charpentier C, Saudubray JM (1982) Correlation between blood ammonia concentration and organic acid accumulation in isovaleric and propionic acidemia. Pediatrics 69:115–117

    PubMed  Google Scholar 

  • Coude FX, Grimber G, Parvy P, Rabier D (1983) Role of N-acetylglutamate and acetyl-CoA in the inhibition of ureagenesis by isovaleric acid in isolated rat hepatocytes. Biochim Biophys Acta 761:13–16

    PubMed  Google Scholar 

  • De Groot CJ, van Zonneveld AJ, Mooren PG, Zonneveld D, van den Dool A, van den Bogaert AJW, Lamers WH, Moorman AFM, Charles R (1984) Regulation of mRNA levels of rat liver carbamoylphosphate synthetase by glucocorticoids and cyclic AMP as estimated with a specific cDNA. Biochem Biophys Res Commun 124:882–888

    Article  PubMed  Google Scholar 

  • De Martinville B, Kunkel LM, Bruns G, Morlé F, Koenig M, Mandel JL, Horwich A, Latt SA, Gusella JF, Housman D, Francke U (1985) Localization of DNA sequences in region Xp21 of the human X chromosome: Search for molecular markers close to the Duchenne muscular dystrophy locus. Am J Hum Genet 37:235–249

    PubMed  Google Scholar 

  • Desjeux J-F, Rajantie J, Simell O, Dumontier A-M, Perheentupa J (1980) Lysine fluxes across the jejunal epithelium in lysinuric protein intolerance. J Clin Invest 65:1382–1387

    PubMed  Google Scholar 

  • Devaney M, Powers-Lee SG (1984) Immunological cross-reactivity between carbamyl phosphate synthetases I, II, and III. J Biol Chem 259:703–706

    PubMed  Google Scholar 

  • Dizikes GJ, Cederbaum SD (1984) Isolation and characterization of cDNA clones for rat liver arginase. Am J Hum Genet 36:135S

    Google Scholar 

  • Dizikes GJ, Grody WW, Kern RM, Cederbaum SD (1985) Isolation and study of cDNA clones for human liver arginase. Am J Hum Genet 37:A152

    Google Scholar 

  • Endres W, Schaller R, Shin YS (1984) Diagnosis and treatment of argininaemia. Characteristics of arginase in human erythrocytes and tissues. J Inherited Metab Dis 7:8

    Article  PubMed  Google Scholar 

  • Farriaux JP, Dhondt JL, Formstecher P, Martin JJ, Pollitt RJ, Kint J, Lagrou A, Mardens Y, Fontaine G (1976) Pathological and biochemical studies on a neonatal case of argininosuccinic aciduria. Acta Neurol Belg 76:26–34

    PubMed  Google Scholar 

  • Fearon ER, Mallonee RL, Phillips AP III, O'Brien WE, Brusilow SW, Adcock MW, Kirby LT (1985) Genetic analysis of carbamyl phosphate synthetase I deficiency. Hum Genet 70:207–210

    Article  PubMed  Google Scholar 

  • Fell V, Pollitt RJ, Sampson GA, Wright T (1974) Ornithinemia, hyperammonemia, and homocitrullinuria. A disease associated with mental retardation and possibly caused by defective mitochondrial transport. Am J Dis Child 127:752–756

    PubMed  Google Scholar 

  • Fleisher LD, Harris CJ, Mitchell DA, Nadler HL (1983) Citrullinemia: prenatal diagnosis of an affected fetus. Am J Hum Genet 35:85–90

    PubMed  Google Scholar 

  • Forget BG, Benz EJ, Weisman SM (1983) Normal human globin gene structure and mutations causing the β-thalassemia syndromes. In: Caskey CT, White RL (eds) Recombinant DNA applications to human disease. Cold Spring Harbor Laboratory, New York, pp 3–17 (Banbury reports vol 14)

    Google Scholar 

  • Freeman JM, Nicholson JF, Schimke RT, Rowland LP, Carter S (1970) Congenital hyperammonemia. Association with hyperglycinemia and decreased levels of carbamylphosphate synthetase. Arch Neurol 23:430–437

    PubMed  Google Scholar 

  • Freytag SO, Beaudet AL, Bock HGO, O'Brien WE (1984a) Molecular structure of the human argininosuccinate synthetase gene: Occurrence of alternative mRNA splicing. Mol Cell Biol 4:1978–1984

    PubMed  Google Scholar 

  • Freytag SO, Bock HGO, Beaudet AL, O'Brien WE (1984b) Molecular structures of human argininosuccinate synthetase pseudogenes: evolutionary and mechanistic implications. J Biol Chem 259:3160–3166

    PubMed  Google Scholar 

  • Funahashi M, Kato H, Shiosaka S, Nakagawa H (1981) Formation of arginine and guanidinoacetic acid in the kidney in vivo. Their relations with the liver and their regulation. J Biochem 89:1347–1356

    PubMed  Google Scholar 

  • Gaasbeek Janzen JW, Moorman AFM, Lamers WH, Los JA, Charles R (1981) The localization of carbamyl-phosphate synthase in adult rat liver. Biochem Soc Trans 9:279

    PubMed  Google Scholar 

  • Gamble JG, Lehninger AL (1973) Transport of ornithine and citrulline across the mitochondrial membrane. J Biol Chem 248:610–618

    PubMed  Google Scholar 

  • Gatfield PD, Taller E, Wolfe DM, Haust MD (1975) Hyperornithinemia, hyperammonemia, and homocitrullinuria associated with decreased carbamyl phosphate synthetase I activity. Pediatr Res 9:488–497

    PubMed  Google Scholar 

  • Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J 2:567–570

    PubMed  Google Scholar 

  • Glick NR, Snodgrass PJ, Schafer IA (1976) Neonatal argininosuccinic aciduria with normal brain and kidney but absent liver argininosuccinate lyase activity. Am J Hum Genet 28:22–30

    PubMed  Google Scholar 

  • Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Rapin I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–64

    PubMed  Google Scholar 

  • Goto Y, Habara S, Nagai H, Kida K, Matsuda H (1983) Sibling case with carbamylphosphate synthetase deficiency (in Japanese). Abstract of Japanese Society for Inherited Metabolic Disease, pp 40–41

    Google Scholar 

  • Gray RGF, Hill SE, Pollitt RJ (1982) Reduced ornithine catabolism in cultured fibroblasts and phytohaemagglutinin-stimulated lymphocytes from a patient with hyperornithinaemia, hyperammonaemia and homocitrullinuria. Clin Chim Acta 118:141–148

    Article  PubMed  Google Scholar 

  • Gray RGF, Hill SE, Pollitt RJ (1983) Studies on the pathway from ornithine to proline in cultured skin fibroblasts with reference to the defect in hyperornithinaemia with hyperammonaemia and homocitrullinuria. J Inherited Metab Dis 6:143–148

    Article  PubMed  Google Scholar 

  • Greenberg DM, Bagot AE, Roholt OA (1956) Liver arginase. III Properties of highly purified arginase. Arch Biochem Biophys 62:446–453

    Article  PubMed  Google Scholar 

  • Grisolia S, Baguena R, Mayor F (eds) (1976). The urea cycle. Wiley, New York

    Google Scholar 

  • Gruskay JA, Rosenberg LE (1979) Inhibition of hepatic mitochondrial carbamylphosphate synthetase (CPSI) by acyl CoA esters: possible mechanism of hyperammonemia in the organic acidemias. Pediatr Res 13:475

    Google Scholar 

  • Guthöhrlein G, Knappe J (1968) Structure and function of carbamoylphosphate synthetase. 1. Transitions between two catalytically inactive forms and the active form. Eur J Biochem 7:119–127

    Article  PubMed  Google Scholar 

  • Hata A, Tsuzuki T, Shimada K, Takiguchi M, Mori M, Matsuda I (1986) Isolation and characterization of the human ornithine transcarbamylase gene: structure of the 5′-end region. J Biochem 100:717–729

    PubMed  Google Scholar 

  • Häussinger D (1983) Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem 133:269–275

    Article  PubMed  Google Scholar 

  • Haust MD, Gatfield PD, Gordon BA (1981) Ultrastructure of hepatic mitochondria in a child with hyperornithinemia, hyperammonemia and homocitrullinuria. Hum Pathol 12:212–213

    PubMed  Google Scholar 

  • Havir EA, Tamir H, Ratner S, Warner RC (1965) Biosynthesis of urea. XI. Preparation and properties of crystalline argininosuccinase. J Biol Chem 240:3079–3088

    PubMed  Google Scholar 

  • Herzfeld A, Raper SM (1976) The heterogeneity of arginases in rat tissues. Biochem J 153:469–478

    PubMed  Google Scholar 

  • Hirsch-Kolb H, Greenberg DM (1968) Molecular characteristics of rat liver arginase. J Biol Chem 243:6123–6129

    PubMed  Google Scholar 

  • Holland PC, Sherratt HSA (1973) Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Biochem J 136:157–171

    PubMed  Google Scholar 

  • Holzgreve W, Golbus MS (1984) Prenatal diagnosis of ornithine transcarbamylase deficiency utilizing fetal liver biopsy. Am J Hum Genet 36:320–328

    PubMed  Google Scholar 

  • Hommes FA, Ho CK, Roesel RA, Coryell ME, Gordon BA (1982) Decreased transport of ornithine across the inner mitochondrial membrane as a cause of hyperornithinaemia. J Inherited Metab Dis 5:41–47

    Article  PubMed  Google Scholar 

  • Hommes FA, Eller AG, Scott DF, Carter AL (1983a) Separation of ornithine and lysine activities of the ornithine-transcarbamylase-catalyzed reaction. Enzyme 29:271–277

    PubMed  Google Scholar 

  • Hommes FA, Kitchings L, Eller AG (1983b) The uptake of ornithine and lysine by rat liver mitochondria. Biochem Med 30:313–321

    Article  PubMed  Google Scholar 

  • Hoogenraad NJ, Sutherland TM, Howlett GJ (1980) Purification of ornithine transcarbamylase from rat liver by affinity chromatography with immobilized transition-state analog. Anal Biochem 101:97–102

    Article  PubMed  Google Scholar 

  • Horwich AL, Kraus JP, Williams K, Kalousek F, Koningsberg W, Rosenberg LE (1983) Molecular cloning of the cDNA for rat ornithine transcarbamylase. Proc Natl Acad Sci USA 80:4258–4262

    PubMed  Google Scholar 

  • Horwich AL, Fenton WA, Williams KR, Kalousek F, Kraus JP, Doolittle RF, Koningsberg W, Rosenberg LE (1984) Structure and expression of a complementary DNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. Science 224:1068–1074

    PubMed  Google Scholar 

  • Horwich AL, Kalousek F, Rosenberg LE (1985) Arginine in the leader peptide is required for both import and proteolytic cleavage of a mitochondrial precursor. Proc Natl Acad Sci USA 82:4930–4933

    PubMed  Google Scholar 

  • Igarashi N, Kubo M, Ohki T, Suzuki Y, Okabe I (1986) An infantile case of Zellweger syndrome with deficiencies of peroxisomal β-oxidation enzymes (in Japanese). J Jpn Pediatr Soc 90:851–859

    Google Scholar 

  • Imamura Y, Kobayashi K, Yamashita T, Saheki T, Ichiki H, Hashida S, Ishikawa E (1987) Clinical application of enzyme immunoassay in the analysis of citrullinemia. Clin Chim Acta 164:201–208

    Article  PubMed  Google Scholar 

  • Jacoby LB, Shih VE, Struckmeyer C, Niermeijer MF, Boue J (1981) Variation in argininosuccinate synthetase activity in amniotic fluid cell cultures: implications for prenatal diagnosis of citrullinemia. Clin Chim Acta 116:1–7

    Article  PubMed  Google Scholar 

  • James JH, Ziparo V, Jeppsson B, Fischer JE (1979) Hyperammonaemia, plasma aminoacid imbalance, and blood-brain amino acid transport: a unified theory of portal-systemic encephalopathy. Lancet 2:772–775

    Article  PubMed  Google Scholar 

  • Jinno Y, Nomiyama H, Wakasugi S, Shimada K, Matsuda I, Saheki T (1984) Isolation and characterization of phage clones carrying the human argininosuccinate synthetase-like genes. J Inherited Metab Dis 7:133–134

    Article  Google Scholar 

  • Jinno Y, Matuo S, Nomiyama H, Shimada K, Matsuda I (1985) Novel structure of the 5′ end region of the human argininosuccinate synthetase. J Biochem 98:1395–1403

    PubMed  Google Scholar 

  • Jinno Y, Niikawa N, Shimada K, Matsuda I (1986) Restriction fragment length polymorphisms in the 5′ end region of the human argininosuccinate synthetase gene. J Inherited Metab Dis 9:317–320

    Article  PubMed  Google Scholar 

  • Jonung T, Rigotti P, Jeppsson B, James JH, Peters JC, Fischer JE (1984) Methionine sulfoximine prevents the accumulation of large neutral amino acids in brain of hyperammonemic rats. J Surg Res 36:349–353

    Article  PubMed  Google Scholar 

  • Kakinuma H, Ohtake A, Ogura N, Takayanagi M, Nakajima H, Nishioka T, Matsuura Y, Takeuchi Y, Asanuma K (1984) Two siblings with complete carbamyl phosphate synthetase I deficiency. Acta Paediatr Jpn 26:16–19

    Google Scholar 

  • Kalousek F, Francois B, Rosenberg LE (1978) Isolation and characterization of ornithine transcarbamylase from normal human liver. J Biol Chem 253:3939–3944

    PubMed  Google Scholar 

  • Kalumuck KE, McInnes RR, Adcock MW, Beaudet AL, O'Brien WE (1985) Cloning of a full length cDNA for human argininosuccinate lyase. Am J Hum Genet 37:A159

    Google Scholar 

  • Kamimura N, Mito T, Nakano C, Ishii S, Nakao Y, Kisa T (1986) A case with argininosuccinic aciduria (in Japanese). Jpn Soc Inherited Metab Dis 2:78

    Google Scholar 

  • Kamoun P, Parvy PH, Phan Dinh D, Boue J, Cathelineau L (1983) Citrulline in aminotic fluid and the prenatal diagnosis of citrullinemia. Prenat Diagn 3:53–56

    PubMed  Google Scholar 

  • Kang SS, Wong PWK, Melyn MA (1983) Hyperargininemia: effect of ornithine and lysine supplementation. J Pediatr 103:763–765

    PubMed  Google Scholar 

  • Kawamoto S, Ishida H, Mori M, Tatibana M (1982) Regulation of N-acetylglutamate synthetase in mouse liver. Postprandial changes in sensitivity to activation by arginine. Eur J Biochem 123:637–641

    PubMed  Google Scholar 

  • Kawamoto S, Amaya Y, Oda T, Kusumi T, Saheki T, Kimura S, Mori M (1985) Molecular cloning of cDNAs for arginase and argininosuccinate lyase of rat liver. Jpn Soc Inherited Metab Dis 2:83

    Google Scholar 

  • Kawamoto S, Amaya Y, Oda T, Kusumi T, Saheki T, Kimura S, Mori M (1986) Cloning and expression in Escherichia coli of cDNA for arginase of rat liver. Biochem Biophys Res Commun 136:955–961

    Article  PubMed  Google Scholar 

  • Kawamoto S, Sonoda T, Ohtake A, Suzuki Y, Tatibana M (submitted) Alteration in arginine activation of N-acetylglutamate synthetase in vitro by disulfide or thiol compounds

    Google Scholar 

  • Kaysen GA, Strecker HJ (1973) Purification and properties of arginase of rat kidney. Biochem J 133:779–788

    PubMed  Google Scholar 

  • Kennaway NG, Harwood PJ, Ramberg DA, Koler RD, Buist NRM (1975) Citrullinemia: enzymatic evidence for genetic heterogeneity. Pediatr Res 9:554–558

    PubMed  Google Scholar 

  • Kimball ME, Jacoby LB (1980) Purification and properties of argininosuccinate synthetase from normal and canavanine-resistant human lymphoblasts. Biochemistry 19:705–709

    Article  PubMed  Google Scholar 

  • Kitajima I, Goto K, Umehara F, Nagamatsu K, Kanehisa Y (1986) A case of lysinuric protein intolerance with intermittent stupor looking like psychomotor seizure in adulthood. Clin Neurol 26:592–600

    Google Scholar 

  • Kleijer WJ, Blom W, Huijmans JGM, Mooyman MCT, Berger R, Niermeijer MF (1984) Prenatal diagnosis of citrullinemia: elevated levels of citrulline in the amniotic fluid in the three affected pregnancies. Prenat Diagn 4:113–118

    PubMed  Google Scholar 

  • Kobayashi K, Itakura Y, Saheki T, Nakano K, Sase M, Oyanagi K, Okamoto R, Mino M (1986a) Absence of argininosuccinate lyase protein in the liver of two patients with argininosuccinic aciduria. Clin Chim Acta 159:59–67

    Article  PubMed  Google Scholar 

  • Kobayashi K, Saheki T, Imamura Y, Noda T, Inoue I, Matuo S, Hagihara S, Nomiyama H, Jinno Y, Shimada K (1986b) Messenger RNA coding for argininosuccinate synthetase in citrullinemia. Am J Hum Genet 38:667–680

    PubMed  Google Scholar 

  • Kodama H, Samukawa K, Okada S, Nose O, Maki I, Yamaguchi M, Yabuuchi H (1983) Study of ammonia metabolism in a patient with ornithine transcarbamylase deficiency using a 15N tracer. Clin Chim Acta 132:267–275

    Article  PubMed  Google Scholar 

  • Kodama H, Ohtake A, Mori M, Okabe I, Tatibana M, Kamoshita S (1986) Ornithine transcarbamylase deficiency. A case with a truncated enzyme precursor and a case with undetectable mRNA activity. J Inherited Metab Dis 9:175–185

    Article  PubMed  Google Scholar 

  • Konarska L, Tomaszewski L (1986) A simple quantitative micromethod of arginase assay in blood spots dried on filter paper. Clin Chim Acta 154:7–18

    Article  PubMed  Google Scholar 

  • Konarska L, Wiesmann U, Colombo JP (1981) Arginase activity in human fibroblast cultures. Clin Chim Acta 115:85–92

    Article  PubMed  Google Scholar 

  • Konarska L, Wiesmann U, v. Fellenberg R, Colombo JP (1983) Isoenzyme pattern and immunological properties of arginase in normal and hyperargininemia fibroblasts. Enzyme 29:44–53

    PubMed  Google Scholar 

  • Konarska L, Tomaszewski L, Colombo JP, Terheggen HG (1985) Human salivary arginase and its deficiency in arginaemia. J Clin Chem Clin Biochem 23:337–342

    PubMed  Google Scholar 

  • Kooka T, Higashi Y, Uebayashi Y, Kobayashi R (1977) A special form of hepatocerebral degeneration with citrullinemia. Neurol Med 6:47–53

    Google Scholar 

  • Lambert M, Simard L, Ray P, McInnes RR (1985) Cloning of argininosuccinate lyase (ASL) and molecular analysis of ASL expression in rat hepatoma lines. Am J Hum Genet 37:A163

    Google Scholar 

  • Lambert MA, Simard LR, Ray PN, McInnes RR (1986) Molecular cloning of cDNA for rat argininosuccinate lyase and its expression in rat hepatoma cell lines. Mol Cell Biol 6:1722–1728

    PubMed  Google Scholar 

  • Levin B, Dobbs RH, Burgess EA, Palmer T (1969) Hyperammonaemia. A variant type of deficiency of liver ornithine transcarbamylase. Arch Dis Child 44:162–169

    PubMed  Google Scholar 

  • Levin B, Oberholzer VG, Palmer T (1973) Citrullinemia and an alternative urea cycle. Pediatr Res 7:728

    PubMed  Google Scholar 

  • Lindgren V, de Martinville B, Horwich AL, Rosenberg LE, Francke U (1984) Human ornithine transcarbamylase locus mapped to band Xp21.1 near the Duchenne muscular dystrophy locus. Science 226:698–700

    PubMed  Google Scholar 

  • Lockridge O, Spector EB, Bloom AD (1977) Argininosuccinate synthetase activity in cultured human lymphocytes. Biochem Genet 15:395–407

    Article  PubMed  Google Scholar 

  • Lusty CJ (1978) Carbamylphosphate synthetase I of rat-liver mitochondria. Purification, properties, and polypeptide molecular weight. Eur J Biochem 85:373–383

    Article  PubMed  Google Scholar 

  • Lusty CJ, Jilka RL, Nietsch EH (1979) Ornithine transcarbamylase of rat liver. Kinetic, physical, and chemical properties. J Biol Chem 254:10030–10036

    PubMed  Google Scholar 

  • Mans AM, Biebuyck JF, Hawkins RA (1983) Ammonia selectively stimulates neutral amino acid transport across blood-brain barrier. Am J Physiol 245:C74–77

    PubMed  Google Scholar 

  • Marescau B, Pintens J, Lowenthal A, Terheggen HG, Adriaenssens K (1979) Arginase and free amino acids in hyperargininemia: leucocyte arginase as a diagnostic parameter for heterozygotes. J Clin Chem Clin Biochem 17:211–217

    PubMed  Google Scholar 

  • Marescau B, Qureshi IA, De Deyn P, Letarte J, Ryba R, Lowenthal A (1985) Guanidino compounds in plasma, urine and cerebrospinal fluid of hyperargininemic patients during therapy. Clin Chim Acta 146:21–27

    Article  PubMed  Google Scholar 

  • Marshall M, Cohen PP (1972) Ornithine transcarbamylase from Streptococcus faecalis and bovine liver. I. Isolation and subunit structure. J Biol Chem 247:1641–1653

    PubMed  Google Scholar 

  • Matsuda I, Arashima S, Imanishi Y, Yamamoto J, Akaboshi I, Shinozuka S, Nagata N (1979) Lysine intolerance in a variant form of citrullinemia. Pediatr Res 13:1134–1136

    PubMed  Google Scholar 

  • Matsuo M, Ookita K, Hashimoto T, Takemine H, Ito H, Koike K, Koike M (1982) A case with deficiency of pyruvate decarboxylase accompanied with hyperammonemia (in Japanese). J Jpn Pediatr Soc 86:214–219

    Google Scholar 

  • McGivan JD, Bradford NM, Mendes-Mourao J (1976) The regulation of carbamoylphosphate synthase activity in rat liver mitochondria. Biochem J 154:415–421

    PubMed  Google Scholar 

  • McGivan JD, Bradford NM, Beavis AD (1977) Factors influencing the activity of ornithine aminotransferase in isolated rat liver mitochondria. Biochem J 162:147–156

    PubMed  Google Scholar 

  • McInnes RR, Shih V, Chilton S (1984) Interallelic complementation in an inborn error of metabolism: genetic heterogeneity in argininosuccinate lyase deficiency. Proc Natl Acad Sci USA 81:4480–4484

    PubMed  Google Scholar 

  • McMurray WC, Mohyuddin F, Rossiter RM, Rathbun JC, Valentine GH, Koegler SJ, Zarfas DE (1962) Citrullinuria. A new aminoaciduria associated with mental retardation. Lancet i:138

    Article  Google Scholar 

  • Metoki K, Hommes FA, Dyken P, Kelloes C, Trefz J (1984) Ultrastructural changes in fibroblast mitochondria of a patient with HHH-syndrome. J Inherited Metab Dis 7:147–150

    Article  Google Scholar 

  • Mezl VA, Knox WE (1977) Metabolism of arginine in lactating rat mammary gland. Biochem J 164:105–113

    Google Scholar 

  • Michels VV, Beaudet AL (1978) Arginase deficiency in multiple tissues in argininemia. Clin Genet 13:61–67

    PubMed  Google Scholar 

  • Mizutani A (1968) Cytochemical demonstration of ornithine carbamoyltransferase activity in liver mitochondria of rat and mouse. J Histochem Cytochem 16:172–180

    PubMed  Google Scholar 

  • Mori M, Morita T, Ikeda F, Amaya Y, Tatibana M, Cohen PP (1981) Synthesis, intracellular transport, and processing of the precursors for mitochondrial ornithine transcarbamylase and carbamylphosphate synthetase I in isolated hepatocytes. Proc Natl Acad Sci USA 78:6056–6060

    PubMed  Google Scholar 

  • Murakami-Murofushi K, Ratner S (1979) Argininosuccinase from bovine brain: isolation and comparison of catalytic, physical, and chemical properties with the enzymes from liver and kidney. Anal Biochem 95:139–155

    Article  PubMed  Google Scholar 

  • Naylor SL, Klebe RJ, Shows TB (1978) Argininosuccinic aciduria: Assignment of the argininosuccinate lyase gene to the pter →q22 region of human chromosome 7 by bioautography. Proc Natl Acad Sci USA 75:6159–6162

    PubMed  Google Scholar 

  • Nomiyama H, Obaru K, Jinno Y, Matsuda I, Shimada K, Miyata T (1986) Amplification of human argininosuccinate synthetase pseudogenes. J Mol Biol 192:221–233

    Article  PubMed  Google Scholar 

  • Nussbaum RL, Boggs BA, Beaudet AL, Doyle S, Potter JL, O'Brien WE (1986) New mutation and prenatal diagnosis in ornithine transcarbamylase deficiency. Am J Hum Genet 38:149–158

    PubMed  Google Scholar 

  • O'Brien WE (1979) Isolation and characterization of argininosuccinate synthetase from human liver. Biochemistry 18:5353–5356

    Article  PubMed  Google Scholar 

  • O'Brien WE, Barr RH (1981) Argininosuccinate lyase: purification and characterization from human liver. Biochemistry 20:2056–2060

    Article  PubMed  Google Scholar 

  • Ohtake A, Miura S, Mori M, Takayanagi M, Kakinuma H, Tatibana M, Nakajima H (1984) A carbamyl phosphate synthetase I deficiency with no detectable messenger RNA activity. Acta Paediatr Jpn 26:262–265

    Google Scholar 

  • Orkin SH (1983) A review of β-thalassemias: The spectrum of gene mutations. In: Caskey CT, White RL (eds) Recombinant DNA applications to human disease. Cold Spring Harbor Laboratory, New York, pp 19–28 (Banbury reports vol 14)

    Google Scholar 

  • Oyanagi K, Tsuchiyama A, Itakura Y, Sogawa H, Wagatsuma K, Nakao T (1983) The mechanism of hyperammonaemia and hyperornithinaemia in the syndrome of hyperornithinaemia, hyperammonaemia with homocitrullinuria. J Inherited Metab Dis 6:133–134

    Article  PubMed  Google Scholar 

  • Oyanagi K, Itakura Y, Tsuchiyama A, Uetsuji N, Tsugawa S, Sase M, Saheki T (1985) Argininosuccinic aciduria associated with argininosuccinate synthetase deficiency in liver (in Japanese). Rinsho Shoni Igaku 33:347–352

    Google Scholar 

  • Palekar AG, Mantagos S (1981) Human liver argininosuccinase purification and partial characterization. J Biol Chem 256:9192–9194

    PubMed  Google Scholar 

  • Perry TL, Wirtz MLK, Kennaway NG, Hsia YE, Atienza FC, Uemura HS (1980) Amino acid and enzyme studies of brain and other tissues in an infant with argininosuccinic aciduria. Clin Chim Acta 105:257–267

    Article  PubMed  Google Scholar 

  • Pierson DL, Brien JM (1980) Human carbamylphosphate synthetase I. Stabilization, purification, and partial characterization of the enzyme from human liver. J Biol Chem 255:7891–7895

    PubMed  Google Scholar 

  • Pierson DL, Cox SL, Gilbert BE (1977) Human ornithine transcarbamylase. Purification and characterization of the enzyme from normal liver and the liver of a Reye's syndrome patient. J Biol Chem 252:6464–6469

    PubMed  Google Scholar 

  • Pohjanpelto P, Holtta E (1983) Arginase activity of different cells in tissue culture. Biochim Biophys Acta 757:191–195

    PubMed  Google Scholar 

  • Pollitt RJ (1973) Argininosuccinate lyase levels in blood, liver and cultured fibroblasts of a patient with argininosuccinic aciduria. Clin Chim Acta 46:33–37

    Article  PubMed  Google Scholar 

  • Pollock MA, Cumberbatch M, Bennett MJ, Gray RGF, Brand M, Hyland K, Congdon PJ, Pitts-Tucker T, Gray S (1986) Pyruvate carboxylase deficiency in twins. J Inherited Metab Dis 9:29–30

    Article  PubMed  Google Scholar 

  • Powers SG (1981) Regulation of rat liver carbamyl phosphate synthetase I. Inhibition by metal ions and activation by amino acids and other chelating agents. J Biol Chem 256:11160–11165

    PubMed  Google Scholar 

  • Qureshi IA, Letarte J, Ouellet R, Lemieux B (1978) Enzymologic and metabolic studies in two families affected by argininosuccinic aciduria. Pediatr Res 12:256–262

    PubMed  Google Scholar 

  • Qureshi IA, Letarte J, Ouellet R, Lelievre M, Laberge C (1981) Ammonia metabolism in a family affected by hyperargininemia. Diabete Metab 7:5–11

    PubMed  Google Scholar 

  • Qureshi IA, Letarte J, Ouellet R, Larochelle J, Lemieux B (1983) A new French-Canadian family affected by hyperargininaemia. J Inherited Metab Dis 6:179–182

    PubMed  Google Scholar 

  • Raijman L (1979) Double deficiencies of urea cycle enzymes in human liver. Biochem Med 21:226–233

    Article  PubMed  Google Scholar 

  • Raijman L, Jones ME (1976) Purification, composition, and some properties of rat liver carbamyl phosphate synthetase (ammonia). Arch Biochem Biophys 175:270–278

    Article  PubMed  Google Scholar 

  • Ratner S (1973) Enzymes of arginine and urea synthesis. In: Meister A (ed) Advances in enzymology vol 39. Wiley, plNew York, pp 1–90

    Google Scholar 

  • Ratner S (1976) Enzymes of arginine and urea synthesis. In: Grisolia S, Baguena R, Mayor F (eds) The urea cycle. Wiley, New York, pp 181–219

    Google Scholar 

  • Raushel FM, Seiglie J (1983) Kinetic mechanism of argininosuccinate synthetase. Arch Biochem Biophys 225:979–985

    Article  PubMed  Google Scholar 

  • Rigotti P, Jonung T, Peters JC, James JH, Fischer JE (1985) Methionine sulfoximine prevents the accumulation of large neutral amino acids in brain of portacaval-shunted rats. J Neurochem 44:929–933

    PubMed  Google Scholar 

  • Rochovansky O, Kodowaki H, Ratner S (1977) Biosynthesis of urea: molecular and regulatory properties of crystalline argininosuccinate synthetase. J Biol Chem 252:5287–5294

    PubMed  Google Scholar 

  • Rodeck CH, Patrick AD, Pembrey ME, Tzannatos C, Whitfield AE (1982) Fetal liver biopsy for prenatal diagnosis of ornithine carbamyl transferase deficiency. Lancet ii:297–299

    Article  Google Scholar 

  • Roerdink FH, Gouw WLM, Okken A, Van der Blij JF, Haan GL Hommes FA, Huisjes HJ (1973) Citrullinemia, report of a case, with studies on antenatal diagnosis. Pediatr Res 7:863–869

    PubMed  Google Scholar 

  • Rosenberg LE, Kalousek F, Orsulak MD (1983) Biogenesis of ornithine transcarbamylase in spf ash mutant mice: two cytoplasmic precursors, one mito-chondrial enzyme. Science 222:426–428

    PubMed  Google Scholar 

  • Rozen R, Fox J, Fenton WA, Horwich AL, Rosenberg LE (1985) Gene deletion and restriction fragment length polymorphisms at the human ornithine trans-carbamylase locus. Nature 313:815–817

    Article  PubMed  Google Scholar 

  • Rubio V, Grisolia S (1981) Human carbamoylphosphate syntetase I. Enzyme 26:233–239

    PubMed  Google Scholar 

  • Ryall J, Rauchubinski RA, Nguyen M, Rozen R, Broglie KE, Shore GC (1984) Regulation and expression of carbamyl phosphate synthetase I mRNA in developing rat liver and Morris hepatoma 5123D. J Biol Chem 259:9172–9176

    PubMed  Google Scholar 

  • Saheki T, Kusumi T, Takada S, Katsunuma T, Katunuma N (1975) Crystallization and some properties of argininosuccinate synthetase from rat liver. FEBS Lett 58:314–317

    Article  PubMed  Google Scholar 

  • Saheki T, Katsunuma T, Sase M (1977a) Changes of ornithine and acetylglutamate concentrations in the livers of rats subjected to dietary transitions. J Biochem 82:551–558

    PubMed  Google Scholar 

  • Saheki T, Kusumi T, Takada S, Katsunuma T (1977b) Studies of rat liver argininosuccinate synthetase. I. Physiochemical, catalytic, and immunochemical properties. J Biochem 81:687–696

    PubMed  Google Scholar 

  • Saheki T, Ohkubo T, Katsunuma T (1978) Increase in the concentrations of ornithine and acetylglutamate in rat liver in response to urea synthesis stimulated by the injection of an ammonium salt. J Biochem 84:1423–1430

    PubMed  Google Scholar 

  • Saheki T, Ueda A, Hosoya M, Kusumi K, Takada S, Tsuda M, Katsunuma T (1981) Qualitative and quantitative abnormalities of argininosuccinate synthetase in citrullinemia. Clin Chim Acta 109:325–335

    Article  PubMed  Google Scholar 

  • Saheki T, Ueda A, Hosoya M, Sase M, Nakano K, Katsunuma T (1982a) Enzymatic analysis of citrullinemia (12 cases) in Japan. Adv Exp Med Biol 153:63–76

    PubMed  Google Scholar 

  • Saheki T, Ueda A, Lizima K, Yamada N, Kobayashi K, Takahashi K, Katsunuma T (1982b) Argininosuccinate synthetase activity in cultured skin fibroblasts of citrullinemic patients. Clin Chim Acta 118:93–97

    Article  PubMed  Google Scholar 

  • Saheki T, Sase M, Nakano K, Azuma F, Katsunuma T (1983a) Some properties of argininosuccinate synthetase purified from human liver and a comparison with the rat liver enzyme. J Biochem 93:1531–1537

    PubMed  Google Scholar 

  • Saheki T, Yagi Y, Sase M, Nakano K, Sato E (1983b) Immunohistochemical localization of argininosuccinate synthetase in the liver of control and citrullinemic patients. Biomed Res 4:235–238

    Google Scholar 

  • Saheki T, Imamura Y, Inoue I, Miura S, Mori M, Ohtake A, Tatibana M, Katsumata N, Ohno T (1984) Molecular basis of ornithine transcarbamylase deficiency lacking enzyme protein. J Inherited Metab Dis 7:2–8

    Article  Google Scholar 

  • Saheki T, Nakano K, Kobayashi K, Imamura Y, Itakura Y, Sase M, Hagihara S, Matuo S (1985a) Analysis of the enzyme abnormality in eight cases of neonatal and infantile citrullinemia in Japan. J Inherited Metab Dis 8:155–156

    Article  PubMed  Google Scholar 

  • Saheki T, Sase M, Nakano K, Yagi Y (1985b) Arginine metabolism in citrullinemic patients. In: Mori A, Cohen BD, Lowenthal A (eds) Guanidines. Plenum, New York, pp 149–158

    Google Scholar 

  • Saheki T, Kobayashi K, Miura T, Hashimoto S, Ueno Y, Yamasaki T, Araki H, Nara H, Shiozaki Y, Sameshima Y, Suzuki M, Yamauchi Y, Sakazume Y, Akiyama K, Yamaura Y (1986) Serum amino acid pattern of type II citrullinemic patients and effect of oral administration of citrulline. J Clin Biochem Nutr 1:129–142

    Google Scholar 

  • Sakiyama T, Suzuki T, Owada M, Kitagawa T (1982) First case of argininosuccinic aciduria in Japan: clinical observations and treatment. Adv Exp Med Biol 153:95–100

    PubMed  Google Scholar 

  • Sase M, Kobayashi K, Imamura Y, Saheki T, Nakano K, Miura S, Mori M (1985) Level of translatable messenger RNA coding for argininosuccinate synthetase in the liver of the patients with quantitative-type citrullinemia. Hum Genet 69:130–134

    Article  PubMed  Google Scholar 

  • Schimke RT (1964) The importance of both synthesis and degradation in the control of arginase levels in rat liver. J Biol Chem 239:3808–3817

    PubMed  Google Scholar 

  • Schutgens RBH, Beemer FA, Tegelaers WHH, De Groot WP (1979) Mild variant of argininosuccinic aciduria. J Inherited Metab Dis 2:13–14

    Article  Google Scholar 

  • Scott-Emuakpor A, Higgins JV, Kohrman AF (1972) Citrullinemia: a new case, with implications concerning adaptation to defective urea synthesis. Pediatr Res 6:626–633

    PubMed  Google Scholar 

  • Shigesada K, Tatibana M (1971a) Enzymatic synthesis of acetylglutamate by mammalian liver preparation and its stimulation by arginine. Biochem Biophys Res Commun 44:1117–1124

    Article  PubMed  Google Scholar 

  • Shigesada K, Tatibana M (1971b) Role of acetylglutamate in ureotelism. I. Occurrence and biosynthesis of acetylglutamate in mouse and rat tissues. J Biol Chem 246:5588–5595

    PubMed  Google Scholar 

  • Shigesada K, Tatibana M (1978) N-Acetylglutamate synthetase from rat-liver mitochondria. Partial purification and catalytic properties. Eur J Biochem 84:285–291

    Article  PubMed  Google Scholar 

  • Shigesada K, Aoyagi K, Tatibana M (1978) Role of acetylglutamate in ureotelism. Variations in acetylglutamate level and its possible significance in control of urea synthesis in mammalian liver. Eur J Biochem 85:385–391

    Article  PubMed  Google Scholar 

  • Shih VE (1976) Hereditary urea-cycle disorders. In: Grisolia S, Baguena R, Mayor F (eds) The urea cycle. Wiley, New York, pp 367–414

    Google Scholar 

  • Shih VE (1978) Urea cycle disorders and other congenital hyperammonemic syndromes. In: Stanbury JB, Wyngaarden JB, Fredrickson DS (eds) The metabolic basis of inherited disease, 4th edn. McGraw-Hill, New York, pp 362–386

    Google Scholar 

  • Shih VE, Mandell R (1974) Metabolic defect in hyperornithinaemia. Lancet ii:1522–1523

    Article  Google Scholar 

  • Shih VE, Efron ML, Moser HW (1969) Hyperornithinemia, hyperammonemia, and homocitrullinuria. A new disorder of amino acid metabolism associated with myoclonic seizures and mental retardation. Am J Dis Child 117:83–92

    PubMed  Google Scholar 

  • Shih VE, Mandell R, Herzfeld A (1982) Defective ornithine metabolism in cultured skin fibroblasts from patients with the syndrome of hyperornithinemia, hyperammonemia and homocitrullinuria. Clin Chim Acta 118:149–157

    Article  PubMed  Google Scholar 

  • Simell O, Mackenzie S, Clow CL, Scriver CR (1985) Ornithine loading did not prevent induced hyperammonemia in a patient with hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Pediatr Res 19:1283–1287

    PubMed  Google Scholar 

  • Skrzypek-Osiecka I, Robin Y, Porembska Z (1983) Purification of rat kidney arginases A1 and A4 and their subcellular distribution. Acta Biochim Pol 30:83–92

    PubMed  Google Scholar 

  • Snyderman SE, Sansaricq C, Chen WJ, Norton PM, Phansalkar SV (1977) Argininemia. J Pediatr 90:563–568

    PubMed  Google Scholar 

  • Snyderman SE, Sansaricq C, Norton PM, Goldstein F, (1979) Argininemia treated from birth. J Pediatr 95:61–63

    PubMed  Google Scholar 

  • Sonoda T, Tatibana M (1983) Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem 258:9839–9844

    PubMed  Google Scholar 

  • Spector EB, Rice SCH, Cederbaum SD (1983) Immunologic studies of arginase in tissues of normal human adult and arginase-deficient patients. Pediat Res 17:941–944

    PubMed  Google Scholar 

  • Stanbury JB, Wyngaarden JB, Frederickson DS (eds) (1978) The metabolic basis of inherited disease, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Stewart PM, Walser M (1980) Short term regulation of ureagenesis. J Biol Chem 255:5270–5280

    PubMed  Google Scholar 

  • Su TS, Bock HGO, O'Brien WE, Beaudet AL (1981) Cloning of cDNA for argininosuccinate synthetase mRNA and study of enzyme overproduction in a human cell line. J Biol Chem 256:11826–11831

    PubMed  Google Scholar 

  • Su TS, Bock HGO, Beaudet AL, O'Brien WE (1982) Molecular analysis of argininosuccinate synthetase deficiency in human fibroblasts. J Clin Invest 70:1334–1339

    PubMed  Google Scholar 

  • Su TS, Bock HGO, O'Brien WE, Beaudet AL (1981) Cloning of cDNA for argininosuccinate synthetase mRNA and study of enzyme overproduction in a human

    Google Scholar 

  • Su TS, Nussbaum RL, Airhart S, Ledbetter DH, Mohandas T, O'Brien WE, Beaudet AL (1984) Human chromosomal assignments for 14 argininosuccinate synthetase pseudogenes: cloned DNAs as reagents for cytogenetic analysis. Am J Hum Genet 36:954–964

    PubMed  Google Scholar 

  • Suzuki Y, Orii T, Mori M, Tatibana M, Hashimoto T (1986) Deficient activities and proteins of peroxisomal β-oxidation enzymes in infants with Zellweger syndrome. Clin Chim Acta 156:191–196

    Article  PubMed  Google Scholar 

  • Takada S, Kusumi T, Saheki T, Tsuda M, Katsunuma T (1979) Studies of rat liver argininosuccinate synthetase. The presence of three forms, and their physicochemical, catalytic, and immunochemical properties. J Biochem 86:1353–1359

    PubMed  Google Scholar 

  • Takiguchi M, Miura S, Mori M, Tatibana M, Nagata S, Kaziro Y (1984) Molecular cloning and nucleotide sequence of cDNA for rat ornithine carbamoyltransferase precursor. Proc Natl Acad Sci USA 81:7412–7416

    PubMed  Google Scholar 

  • Terheggen HG, Schwenk A, Lowenthal A, van Sande M, Colombo JP (1969) Argininaemia with arginase deficiency. Lancet ii:748–749

    Article  Google Scholar 

  • Terheggen HG, Lowenthal A, Lavinha F, Colombo JP (1975) Familial hyperargininaemia. Arch Dis Child 50:57–62

    PubMed  Google Scholar 

  • Van der Heiden C, Gerards LJ, Van Biervliet JPGM, Desplanque J, De Bree PK, Van Sprang FJ, Wadman SK (1976) Lethal neonatal argininosuccinate lyase deficiency in four children from one sibship. Helv Paediatr Acta 31:407–417

    PubMed  Google Scholar 

  • Van Elsen AF, Leroy JG (1975) Arginase isoenzymes in human diploid fibroblasts. Biochem Biophys Res Commun 62:191–198

    Article  PubMed  Google Scholar 

  • Van Elsen AF, Leroy JG (1977) Human hyperargininemia: a mutation not expressed in skin fibroblasts? Am J Hum Genet 29:350–355

    PubMed  Google Scholar 

  • Vidailhet M, Levin B, Dautrevaux M, Paysant P, Gelot S, Badonnel Y, Pierson M, Neimann N (1971) Citrullinemie. Arch Franc Ped 28:521–532

    Google Scholar 

  • Vielle-Breitburd F, Orth G (1972) Rabbit liver L-arginase. Purification, properties and subunit structure. J Biol Chem 247:1227–1235

    PubMed  Google Scholar 

  • Walser M (1983) Urea cycle disorders and other hereditary hyperammonemic syndromes. In: Stanbury JB, Wyngaarden JB, Frederickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 402–438

    Google Scholar 

  • Windmueller HG, Spaeth AE (1981) Source and fate of circulating citrulline. Am J Physiol 241:E473–E480

    PubMed  Google Scholar 

  • Wright T, Pollitt R (1973) Psychomotor retardation, epileptic and stuporous attacks, irritability and ataxia associated with ammonia intoxication, high blood ornithine levels and increased homocitrulline in the urine. Proc R Soc Med 66:221–226

    Google Scholar 

  • Yajima Y, Hirasawa T, Saheki T (1982) Diurnal fluctuation of blood ammonia levels in adult-type citrullinemia. Tohoku J Exp Med 137:213–220

    PubMed  Google Scholar 

  • Yamamoto H, Sawada Y, Hase Y, Fukuda Y, Tsuruhara T, Ohura T, Yamaguchi S, Aono S, Fujimoto A, Ohtake H, Miyagi T (1983) A case with argininosuccinic aciduria discovered by mass-screening test (in Japanese). Abstracts of Japanese Society of Inherited Metabolic Disease, p 62

    Google Scholar 

  • Yokoi T, Honke K, Funabashi T, Hayashi R, Suzuki Y, Taniguchi N, Hosoya M, Saheki T (1981) Partial ornithine transcarbamylase deficiency simulating Reye syndrome. J Pediatr 99:929–931

    PubMed  Google Scholar 

  • Yoshida K, Watanabe M, Kida K, Matsuda H (1984) A case with hyperornithinemia, hyperammonemia and homocitrullinuria (in Japanese). Abstracts of Japanese Society of Inherited Metabolic Disease, p 105

    Google Scholar 

  • Yoshino M, Kubota K, Yoshida I, Murakami T, Yamashita F (1982) Argininemia: report of a new case and mechanisms of orotic aciduria and hyperammonemia. Adv Exp Med Biol 153:121–125

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this chapter

Cite this chapter

Saheki, T., Kobayashi, K., Inoue, I. (1987). Hereditary disorders of the urea cycle in man: Biochemical and molecular approaches. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 108. Reviews of Physiology, Biochemistry and Pharmacology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034071

Download citation

  • DOI: https://doi.org/10.1007/BFb0034071

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17778-4

  • Online ISBN: 978-3-540-47824-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics